论文部分内容阅读
酞菁自从被人们发现、研究至今已有100多年了,如今已研究出来的酞菁配合物种类十分繁多。由于酞菁对光和热具有良好的稳定性又具有优良的光电性质,并且近几年人们不断合成出了在近红外区域有大量吸收的酞菁材料,这使得酞菁在越来越多的高端领域得到广泛的应用。例如太阳能电池、生物传感器、光动力学疗法、场效应晶体管等等。物质的性质是由物质的结构决定的,因此我们可以通过改变酞菁的结构从而来制备不同性能的酞菁材料。例如在酞菁特有的18电子共轭大环体系上通过改变配位金属,或者改变其外围上的取代基以及增加酞菁外围基团的共轭体系等等的方法从而得到一些具有更加良好性能的酞菁材料。本文共由三大部分组成,在第一部分介绍了酞菁的发展史、结构特点、光谱性质以及介绍了一部分传统合成酞菁的方法和近年人们改良后得到酞菁产率较高的合成方法,除此之外着重介绍了酞菁作为智能材料在高新技术方面的应用。第二部分主要介绍了以4-[4-(2-溴-1-甲基-乙烯基)苯氧基]邻苯二腈为原料,通过改变配位金属合成了四种不同的金属酞菁,它们是:2(3),9(10),16(17),23(24)-四{4-[4-(2-溴-1-甲基-乙烯基)苯氧基]}锰酞菁、2(3),9(10),16(17),23(24)-四{4-[4-(2-溴-1-甲基-乙烯基)苯氧基]}铜酞菁、2(3),9(10),16(17),23(24)-四{4-[4-(2-溴-1-甲基-乙烯基)苯氧基]}锌酞菁以及不对称金属铜酞菁。并且用红外光谱、紫外光谱、质谱和核磁对这四种酞菁进行了表征和分析,比较和总结了它们在近红外区的吸收,发现它们能够作为近红外吸收材料,具有很大的应用前景。在第三部分主要归纳了本文的工作内容,总结了本文的不足之处并提出了改进意见,与此同时对酞菁材料应用领域的的广泛性和重要性做出展望。