论文部分内容阅读
随着电子信息技术的不断发展,电子器件的单位面积发热量不断提高,电子器件的安全、高效运行受到严重影响。因此,急需开发新一代的电子封装散热材料来保证电子元器件的有效散热。金刚石具有优异的热物理性能,其热导率为600-2000 W/mK,是自然界中热导率最高的材料。金刚石颗粒增强金属基(metal/diamond)复合材料具备优异的热物理性能,成为新一代电子封装散热材料的代表。采用高压气体辅助熔渗法制备的Al/diamond复合材料有效结合金刚石优异的热物理性能和A1基体较低的密度以及优良的加工成形性,是新一代电子封装散热材料的研究热点。金刚石和A1之间的界面结合状态直接决定了 Al/diamond复合材料的整体性能,对复合材料界面结构的调控可实现对复合材料热物理性能的优化,是提升复合材料性能的有效方式。然而,目前针对复合材料界面结构的表征并不完善,对于A1基体和金刚石之间的界面反应机理缺乏深入研究,无法从理论上指导复合材料界面结构和导热性能的优化。本文通过高压气体辅助熔渗法制备Al/diamond复合材料,通过聚焦离子束刻蚀系统(FIB)和透射电子显微镜(TEM)等先进表征手段来研究不同制备工艺下复合材料的界面结构,深入理解界面形成机制,建立复合材料制备工艺、界面结构和导热性能之间的有效联系,进而实现Al/diamond复合材料热物理性能的提升。本文采用高压气体辅助熔渗法制备Al/diamond复合材料,通过改变复合材料制备工艺,控制A1基体和金刚石颗粒之间界面反应程度,系统研究了界面反应产物的形核和长大机制。结果表明,界面反应产物A14C3的形成是非均匀形核过程,其形核和长大受到金刚石表面状态影响。碳化物在金刚石表面台阶处形核并长大,金刚石(100)面上的碳化物与金刚石表面呈55°夹角,颗粒密度较高,尺寸较小;金刚石(111)面的碳化物颗粒平行金刚石表面,碳化物密度较小,尺寸较大。对比不同反应阶段碳化物颗粒的形貌以及复合材料热导率发现,当界面A14C3呈现细小弥散分布时,复合材料具有最高热导率。这是由于细小弥散分布的碳化物颗粒显著改善复合材料的界面结合,同时由于A14C3具有较低的热导率,细小的碳化物颗粒不显著增加界面热阻。在此基础上对金刚石颗粒进行预处理来促进金刚石表面碳结构转变,进而调整界面A14C3的形成过程。研究发现,通过预加热处理可在金刚石表面产生sp2碳结构,进而促进细小弥散的界面碳化物的形成,起到优化复合材料界面结构和热导率的作用。所制备的Al/diamond复合材料热导率从540 W/mK提高至 710W/mK。Al/diamond复合材料界面产物A14C3的水解性限制了复合材料的应用范围。通过在金刚石表面镀覆合金元素引入新的界面反应层,是优化Al/diamond复合材料界面结构的重要手段。然而,界面反应层的引入必然会影响复合材料热导率,因此需要在抑制A1基体和金刚石发生界面反应形成A14C3的前提下,对复合材料界面反应层的微观结构进行调控和优化。本文系统研究了金刚石表面Ti和W镀层在制备Al/diamond复合材料过程中的演化行为,从而获得最佳的镀层厚度和复合材料制备参数。研究表明,Ti镀层与金刚石发生化学反应生成TiC界面层,并在熔渗阶段保持稳定。随着Ti镀层厚度的增加,复合材料热导率呈现先增高后降低的趋势,当镀层厚度为200 nm时,复合材料热导率最高值为650 W/mK。对于上述现象的解释是,为降低复合材料界面热阻,应尽量减小TiC层的厚度,然而较薄的镀层无法有效改善复合材料界面结合,导致热导率下降。在低温加热过程中,TiC界面层与A1基体发生反应生成少量的A14C3相。W镀层在复合材料制备过程中与A1基体发生反应,在界面位置生成Al5W反应层。研究表明,这一界面反应较慢,可通过调控复合材料的制备工艺参数来控制界面反应层厚度,从而优化复合材料界面结构和热物理性能。当复合材料熔渗时间从10 min延长至60 min时,复合材料的热导率从520 W/mK上升至630 W/mK。虽然镀W金刚石颗粒增强铝基复合材料的热导率相对较低,但所形成的A15W界面反应层可以有效抑制复合材料中A14C3界面相的生成,扩大了复合材料的应用范围。综上所述,本文系统研究了金刚石颗粒增强铝基复合材料的界面形成机理,建立了复合材料制备工艺参数、界面结构和导热性能之间的有效联系。通过研究金刚石颗粒增强铝基复合材料的界面结构以及相应的界面结构优化手段,为复合材料的优化设计和可控制备提供了理论参考。研究结果进一步提升了金刚石颗粒增强金属基复合材料的热物理性能,可以更好地应用于电子器件散热。