低分子量马来酸酐化聚丁二烯橡胶改性聚乙烯增韧尼龙6

来源 :中国科学院长春应用化学研究所 | 被引量 : 0次 | 上传用户:o9876521
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
尼龙6是世界上使用最广泛的工程塑料之一,由于尼龙6大分子链中含有酰胺键能形成氢键,使其具有强韧、耐磨、耐冲击、耐疲劳、耐腐蚀等优异的特性。但是尼龙6存在低温和干态冲击性能差,吸水性大等弱点,不能满足汽车、电子、机械等行业对材料高韧性的需求。利用橡胶和弹性体对尼龙6进行增韧已经取得了很大的成功,但无法解决成本较高且基体材料刚性损失过大这一难题。实践证明,具有硬核软壳结构核壳粒子在增韧半晶性高聚物时,可以有效提高橡胶的增韧效率,减少体系拉伸强度和模量的损失。然而具有这种结构的核壳粒子合成过程复杂,成本很高,工业应用前景很小:而用传统的反应增容方法原位制备核壳粒子时,由于橡胶分子量大,黏度高,流动性差等特点限制了在反应中原位生成核一壳结构粒子的效率,影响最终的增韧效果。本论文首次尝试用低分子量的马来酸酐化聚丁二烯橡胶通过反应挤出的方法接枝改性聚乙烯,对尼龙6进行增韧,利用聚丁二烯橡胶分子链上的马来酸酐基团和尼龙6分子链的端氨基反应,在尼龙6基体中原位形成以聚乙烯为核,聚丁二烯为壳的核壳粒子,结果得到了高韧性、良好刚性的改性尼龙6。   实验证实该含有双键的低分子量橡胶能够成功的接枝到聚乙烯分子主链上,由于橡胶的马来酸酐化程度很高(14wt%),在同尼龙6共混过程中大大提高马酐基团和尼龙6端氨基之间反应生成的接枝共聚物的效率,可以有效减小两相间的界面张力,改善聚乙烯在尼龙6基体中的分散。通过透射电镜观察共混物内部形态结构发现,共混体系中形成了以聚乙烯为核,橡胶为壳的核—壳结构粒子。这种核—壳粒子对尼龙6有良好的增韧效果。当聚丁二烯橡胶的含量仅为1.5wt%时,尼龙6的冲击强度可以达到1100J/m,而拉伸强度还能保持在47.3MPa。   通过对核壳增韧体系冲击断面和拉伸力学曲线的分析我们发现,由于增韧体系中能够形成软壳硬核的核—壳结构粒子,在外力作用下,由橡胶相构成的壳结构能在聚乙烯核与基体之间形成纤维结构,这种纤维结构不仅能够改变体系的应力状态,引发基体屈服,而且大大增强了分散相粒子同基体之间的界面强度,提高体系的刚性。同时,由于两相间纤维结构的存在,材料内部形成一个类似“物理交联”的网络,材料表现出类橡胶的弹性拉伸性能,没有明显的屈服。   传统的S.Wu的逾渗理论不能很好预测这种核壳增韧体系的性能。Corte和Leibler的模型不仅考虑了基体树脂的特性(ζ*,σβ,σγ),而且还将分散相粒子尺寸(d)也考虑了进去,更好地预测了体系的脆韧转变点。同时在基体树脂相同,且都能增韧的前提下,可以通过Corte和Leibler模型中参数C(代表分散相粒子能够引发基体发生屈服的能力)的大小预测增韧体系程度的大小,C值越大,体系增韧效果越好。   通过对从上述增韧体系中抽提出的原位生成的PE-g-PB-g-PA6接枝共聚物的热力学和形貌分析发现,PA6链段被限制在宽50-70nm条带状连续结构中,其运动能力受到限制,因此在结晶过程中PA6嵌段的扩散速度降低。导致在通常的结晶速率条件下(10℃/min)结晶不完善,其结晶度、结晶温度、熔融温度都有所降低,形成以γ晶型为主的不完善结晶。由于在PE和PA6链段之间由一个短的柔性PB链段相连接,因此PA6链段不能同PE发生共结晶,作为连续相PE的结晶行为受到接枝共聚物的影响要小很多。
其他文献
深入研究材料辐照损伤效应不仅有助于理解离子与物质相互作用的微观机理,也有助于材料辐照改性技术在工业中的应用。本论文借助于多种光谱技术对高能重离子在几类材料中的辐照
噪声污染的治理是当今世界性的难题之一。声学材料是降低噪声,改善声环境的有效措施。因此,新型声学材料的研究和开发具有重要的实际意义。本论文围绕材料声学性能测试仪器研制
超声因为其安全性、非侵入性以及简单可控的特点可以应用于开发新型刺激响应型药物递送系统。谷胱甘肽(GSH)在细胞外的浓度为2-10μM,但在细胞内高达2-10mM,且肿瘤细胞内谷胱甘
核酸为生命的最基本物质之一,是生物体遗传信息的携带者,在生长、遗传、变异等一系列重大生命现象中起决定性的作用。以核酸作为新药设计的靶分子,越来越受到人们的广泛重视。然
稀土配合物的发光具有发射带窄、色纯度高、峰发光位置不受配体环境变化的影响、发光不受温度影响等特点,而且发射峰覆盖400-1800纳米的可见区和近红外区,因此可以作为有机电致
碳碳键偶联一直是碳链增长的重要方法之一,而如何在分子尺度下实现金属表面的碳链增长与共轭分子体系的构建,对于有机分子电子学的发展具有重要意义。本论文设计、合成了多种异
请下载后查看,本文暂不支持在线获取查看简介。 Please download to view, this article does not support online access to view profile.
期刊
纳米润滑膜在微/纳器件、磁记录系统以及空间装置中有重要应用,近年来受到了人们的广泛关注。离子液体具有超低挥发、高热稳定性、高化学稳定性等优良物理化学特性,已有大量研
在本论文工作中,结合SPR技术对界面折射率敏感的特性,将SPR传感金膜同时用作电化学研究界面,在自行组建的电化学SPR(EC-SPR)池中开展了电化学SPR对纳米界面的构建与应用研究,具体
请下载后查看,本文暂不支持在线获取查看简介。 Please download to view, this article does not support online access to view profile.
期刊