论文部分内容阅读
数据挖掘是当今计算机科学中快速发展的一个研究方向,它涉及到多个领域的知识。数据挖掘能从大量的数据中发现一些人们事先未知的、潜在的、有趣的知识,因此广泛被应用于商业分析、机器学习、网络个性化服务等领域。数据挖掘有很多研究方向,关联规则和序列模式是其中重要的两类,其中关联规则的研究重点在于频繁项集的发现,而序列模式则强调数据的序列特性。本文基于粒计算的相关原理和模型,对关联规则和序列模式的挖掘算法进行了研究。本文的主要工作概括如下:1.概述了数据挖掘和粒计算的基本原理,说明了数据挖掘的主要研究方向和粒计算的几个重要的计算模型,对关联规则、序列模式和粗糙集的基础理论知识进行了介绍,对常见的关联规则挖掘算法和序列模式挖掘算法进行了简单的汇总和分析。2.详细分析了关联规则挖掘算法Apriori算法的原理。针对Apriori算法存在的产生较多候选频繁项的问题,给出基于粒化原理的改进算法Apriori-GRC算法,并通过仿真实验表明其有效性。3.给出一种基于重要度的粗糙集信息系统属性约简算法Sig-Reducts算法。讨论了序列的粗糙集模型,在Sig-Reducts算法的基础上,给出了一种基于决策表的序列规则挖掘算法Sequence-Mining算法,分析了算法的时间复杂度并通过仿真实验进行了验证。