全实伪脐子流形,Wulff-Ros等周不等式与Orlicz-Brunn-Minkowski型不等式

来源 :西南大学 | 被引量 : 0次 | 上传用户:pjp4057
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本学位论文主要研究了子流形的Pinching问题,Wulff流,Lp-Brunn-Minkowski理论,对偶Lp-Brunn-Minkowski理论,Orlicz-Brunn-Minkowski理论和对偶 Orlicz-Brunn-Minkowski理论.得到了一些内蕴刚性定理,Wulff-Gage等周不等式等号成立的充要条件,Wulff-Ros等周不等式,对偶Orlicz混合均质积分的定义及其相关的对偶Orlicz-Minkowski不等式,对偶Orlicz-Brunn-Minkowski不等式等.这些分别是微分几何,积分几何与凸几何分析领域中的热点问题。  在第二章中,我们讨论了复空间形式中具有平行平均曲率向量的全实伪脐子流形Mn的一些性质,采用活动标架法,通过估算子流形第二基本形式模长的平方的Laplacian,利用Hopf极大原理,Stokes定理,通过对伪脐子流形Mn的第二基本形式模长的平方,截面曲率和Ricc曲率加以限制,得到了Mn为全脐子流形的一些内蕴刚性定理.  在第三章中,给出了关于欧氏平面R2中的有界凸域K,W的Wulff-Gage不等式的加强形式,即证明了Wulff-Gage不等式等号成立当且仅当K与W位似,得到了名副其实的Wulff-Gage等周不等式.特别地,当W为单位圆盘时,我们可以得到Gage等周不等式的加强形式.利用支撑函数,可以将Wulff-Gage等周不等式写成关于以2n为周期的周期函数的积分不等式,该积分不等式可以看成Wulff-Gage等周不等式所对应的分析不等式.同时,也证明了曲率的Wulff熵等周不等式等号成立当且仅当K与W位似.  在第四章中,通过讨论平面卵形区域K+tW的支持函数的一些性质,证明了Wulff-Ros亏格在与W相关的Wulff流下是一个不变量,同时得到了Wulff-Ros等周不等式,找到了Wulff等周亏格与Wulff-Ros等周亏格之间的关系,还给出了Wulff-Ros等周亏格的几个下界估计值,最后还得到Wulff曲率序列积分的循环不等式.  在第五章中,主要研究对偶Orlicz-Brunn-Minkowski理论.通过讨论径向Orlicz线性组合,引入了对偶Orlicz混合均质积分的概念,并利用均质积分一阶变分公式得到了对偶Orlicz混合均质积分的积分表达式.建立了关于对偶Orlicz混合均质积分的对偶Orlicz-Minkowski不等式和对偶均质积分关于径向Orlicz线性组合的对偶Orlicz-Brunn-Minkowski不等式,同时还证明了它们的等价性。还得到了对偶Orlicz-Cauchy-Kubota公式.最后,通过继续讨论对偶Orlicz混合均质积分表达式,得到了对偶Orlicz混合均质积分的连续性,唯一性,在一般线性变换下的性质,以及关于对偶Orlicz混合均质积分的循环不等式.  在第六章中,重点讨论了Blaschke-Minkowski同态和径向Blaschke-Minkowski同态.建立了凸体的Blaschke-Minkowski同态关于Orlicz线性组合的Orlicz-Brunn-Minkowski不等式,星体的径向Blaschke-Minkowski同态关于径向Orlicz线性组合的对偶Orlicz-Brunn-Minkowski不等式.最后主要研究Lp-Brunn-Minkowski理论和对偶lp-Bru皿-Minkowski理论,通过讨论两凸体关于Blaschke-Minkowski同态的均质积分差函数,两星体关于径向Blaschke-Minkowski同态的对偶均质积分差函数,凸体关于Blaschke-Minkowski同态的均质积分与星体关于径向Blaschke-Minkowski同态的对偶均质积分差函数,得到了相应的&-Brunn-Minkowski不等式和对偶Ip-Brunn-Minkowski不等式.
其他文献
组合设计中的大集问题有着悠久的历史,在实验设计、码论等方面有着非常重要的应用。由于它的难度,长期来的进展一直很慢。近三十多年来,在一些新方法和新手段的推动下,大集研究呈
自从20世纪六十年代开始,由于随机建模在自然科学和工程的诸多领域中得到了应用,随机系统开始受到了越来越多的重视,得到了许多关于随机系统的结论,也提出了许多随机系统不同
由于纽结在空间中是连续变化的,所以我们通过观察很难判断出两个纽结是否为同一个纽结,更难发现纽结间的内在关系,所以数学家们开始用代数知识来研究纽结,多项式也就成为了研究的
采用超声辅助法提取商陆果实中的多糖,提取液用多糖确证实验验证,以葡萄糖为对照,采用分光光度法在610nm处测定其中的多糖。回归方程为:A=20.894C+0.1677,r=0.9962。商陆果实
本文运用Nehari流形,集中紧性原理以及Ekeland变分原理等方法研究了两类在有界区域里带有临界指数的Kirchhoff方程.  首先,我们研究了四维空间内如下带有临界指数的Kirchhof
本文研究RN中有界开集Ω上的带有不定权且含有临界位势的非线性椭圆方程{-△u-μu/δ2(x)=a(x)up*-1+f(x,u),x∈Ω, u=0,x∈(a)Ω,(0-1)其中2≤p*<2N/(N-2),0≤μ≤(-μ)△=1/
本文介绍了带加法扰动的随机Sine-Gordon方程组,主要研究了它所生成的随机动力系统在(H10(Ω)×L2(Ω))2上的随机吸引子的上半连续性。本文考虑如下带有加法白噪音的随机Sine-
近年来,已建、在建的18座大型枢纽将珠江节节阻断,导致航运效率大幅降低。上游云贵等地的煤矿金矿只能通过铁路公路运输,运费大为提高。珠江流域所有枢纽都规划了通航设施,但因为
大多数人的童年都会有个玩偶。孩子们去哪儿都总会拿着它,将其当作家庭成员的一份子,更会试着跟它对话并照顾它。在孩子成长过程中,它扮演了很重要的陪伴者的角色。对于这个
智能建筑行业一直处于高速发展阶段,随着我国经济结构的调整,绿色、节能、科技创新已成为行业发展的重要方向,智慧社区、智慧城市的发展趋势也愈发明显,更值得关注的是智能建