论文部分内容阅读
硝酸盐自身不会损害人体,但它会在人体内部产生亚硝酸盐,从而不利于人体健康。去除水体中硝酸盐的方法主要有化学、生物和物理化学方法,其中物化法中的离子交换、反渗透法在去除硝酸盐时,会产生高浓度浓缩废液。目前,主要利用生物法处理高浓度浓缩废液,但是在生物处理过程中会投加有机碳源,若投加过量则会造成二次污染,投加量少则反硝化不完全,且反应过程中产生的污泥量较大,后续处理比较麻烦,这在国内外高硝高盐废液处理领域已成为亟待解决的一个难题。与上述生物法相比,溶析结晶法因其具有操作温度低、能耗低、溶析剂可以回收利用、不会造成二次污染等特点,用于废液中无机盐的回收利用具有独特的优势。本文针对反渗透或离子交换等工艺排出的高浓度硝酸盐废水,提出了溶析结晶法进行废水中高浓度硝酸盐氮(NO3--N)的去除技术。主要目的是探究溶析结晶法处理高浓度硝酸盐废水的可行性。本文主要从以下几个方面进行研究:硝酸钠在无水乙醇-水溶液中的固液平衡;利用以无水乙醇为溶析剂的溶析结晶法去除高浓度硝酸盐废水中的NO3--N时溶液中多个因素(无水乙醇投加量、溶液初始浓度、Ca2+浓度、温差、溶液pH以及搅拌速率)对NO3--N去除率的影响,并探讨了其基本机理;对溶液中各因素进行Plackett-Burman designs试验设计和Box-Behnken试验设计确定去除NO3--N的最佳工艺条件;探究多级溶析结晶对NO3--N去除率的影响。论文的主要结论如下:1.根据测得硝酸钠在不同温度下在不同质量比的无水乙醇-水体系中的溶解度数据,并运用溶解度经验模型(C*=a/b+xc)对溶解度数据进行关联,为探究利用无水乙醇作溶析剂的溶析结晶法处理高浓度硝酸盐废水的可行性奠定了基础。2.通过研究溶液中各因素:无水乙醇投加量、溶液初始浓度、Ca2+浓度、温差、溶液pH以及搅拌速率对NO3--N去除率的影响,发现无水乙醇投加量、初始浓度、Ca2+浓度、温差的增加均有助于NO3--N的去除;溶液中保持适当碱度有助于NO3--N的去除;溶液中NO3--N的去除率与溶析过程中搅拌转速并无明显关系。3.为了提高溶液中NO3--N的去除率,使溶析结晶法对NO3--N的去除达到更好的效果,对溶液中各因素进行了Plackett-Burman designs试验设计和B ox-B ehnken试验设计。根据Plackett-Burman designs试验设计结果可知:各因素对溶液中NO3--N的去除率影响大小排序顺序为无水乙醇投加量>初始浓度>钙离子浓度>温差>pH>搅拌速率。通过Box-Behnken试验设计可确定出最佳工艺条件:当无水乙醇投加量为80 mL,初始浓度为9.40 g·L-1,钙离子浓度为0.84 g·L-1时,溶液中NO3--N的去除率可达63.09%。4.利用多级溶析结晶工艺对剩余溶液中的NO3--N进行去除时,可以提高整个工艺过程中NO3--N的去除率。