面向健康领域的因果关系图构建系统的设计与实现

来源 :合肥工业大学 | 被引量 : 0次 | 上传用户:jick85726
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
因果关系是一类具有明确导向的关系类型,尤其在健康领域具有更多的实际应用价值,比如分析疾病的致病因素等。目前,很多生物医学文献都包含因果关系知识,这部分因果关系值得被挖掘。为此,本文设计开发了一个面向健康领域的因果关系图构建系统,提取相关生物医学文献中的因果关系,并整合不同数据源,构建因果关系图,旨在帮助健康领域的从业人员决策判断,归因分析等。本文工作分为以下两部分:(1)提出了基于循环神经网络的因果关系提取方法,该方法分为四个步骤,分别是数据预处理、复杂句简化、因果实体确定以及因果关系提取。在数据预处理阶段,去除句子中注释,特殊符号等多余成分。在复杂句简化阶段,根据从句剥离以及并列句分解这两个方面进行简化。在因果实体确定阶段,确定简单句中的主语和宾语,对主宾进行语义扩充。在因果关系提取阶段,使用结合自注意力机制以及相似性特征的双向门控网络提取因果关系。实验结果表明,本文构建的因果关系提取模型提高了现有模型的提取精度,F值达到92.5%。(2)设计并实现了面向健康领域的因果关系图构建系统,该系统包含三个模块,分别是因果关系提取模块、因果关系图构建模块以及数据可视化模块。在因果关系提取模块中,自动化提取非结构化文本中包含的因果关系。在因果关系图构建模块中,手动或基于人工修正的自动化提取结果构建因果关系图。在数据可视化模块中,可视化展示已经构建完成的因果关系图。目前系统已经包含了护理,阿尔兹海默症,心脏病,心血管疾病,肝部疾病等健康领域的因果关系图数据。
其他文献
水下无线传感器网络作为一种探索和开发海洋的新方法,在人类不易接触的水下区域的探测和监测中发挥着重要作用。水下无线传感器网络已广泛用于海洋信息收集,地质灾害预防,资源勘探和军事监测等许多领域,是无线传感器网络领域研究的热点之一。在水下空间中传感器节点如何自主调整位置实现对目标事件的覆盖和监视是一个重要课题,它为网络拓扑、目标监测、数据路由等应用领域提供支持,是决定水下无线传感器网络服务质量和工作效能
图像分割是图像处理领域和计算机视觉领域中的关键技术之一。活动轮廓模型分割法因在医学图像等复杂图像的分割中取得了较好的分割效果而被广泛应用。医学图像大多为灰度不均的且含噪声的图像,基于区域的局部二值拟合活动轮廓模型有效解决了该类型图像的分割问题,但该模型中存在水平集函数演化效率低、分割效果易受噪声影响以及初始轮廓敏感等问题。本文针对以上问题进行改进并做出仿真,具体工作如下:1.针对模型分割效率低和易
目标检测是计算机视觉领域里一项十分重要的任务,在交通、医疗、国防等领域有广泛的应用。深度学习的引入使得目标检测算法获得了巨大的进步,目前基于深度学习的目标检测算法在精确度与速度上已经大幅超越传统算法,成为本领域的主流。本文针对目标检测算法所存在的一些困难,在经典的一阶段目标检测算法SSD的基础之上,进行了一系列的研究工作。本文的主要内容如下:目标检测任务是一种多尺度的任务,使用来自网络中不同深度的
由于时代的进步,遥感领域的科研技术也逐渐成熟,人类通过各类遥感卫星获取大量影像数据变得轻而易举。其中合成孔径雷达(Synthetic Aperture Radar,SAR)和可见光影像应用领域非常之广,尽管两者间灰度值区别很大,可它们均有自身的特性。可见光影像成像机理为光反射成像,依赖光源,所以该影像具备大量的光谱信息与细节信息,直观效果很好。SAR影像的成像机理为主动微波式成像,对桥梁、房屋等建
目标检测能够快速地从图片或视频中捕捉到感兴趣的目标,并输出目标的种类和目标的位置。作为计算机视觉的重要分支,它是人脸识别、目标跟踪等算法的基础性算法,一直是计算机视觉领域研究的热点。随着目标检测的技术的成熟,它的应用已经普及到生产和生活的许多领域,如交通、医疗、安防等领域。现如今,得益于GPU计算能力不断的提升和深度学习的快速发展,深度学习方法的优越性在许多领域得到体现。计算机视觉领域因深度学习的
高光谱图像包含大量的光谱波段,它是一种同时结合光谱信息和空间信息的三维图像数据。在现实生活中,高光谱图像可以应用到许多领域。例如:在农产品的检测中有助于种类识别;对地表建筑物的分类有助于城市管理;对病理图像的识别可用于疾病监控;对军事地图的分类能应用于国防建设。因此提出新颖高效的高光谱图像分类方法能够在众多领域中发挥重要的作用。为了提升高光谱图像分类的精确性,需要解决其高维度和样本少的困难。而深度
随着自然语言处理技术的不断发展,人们开始利用神经网络搭建人和机器之间的沟通桥梁—情感分析。已有的方法已经无法满足精细化分类的需求,研究者们开始追求细粒度更高的方面级情感分析技术,但是分析结果的准确度和时间成本一直以来都差强人意。本文针对方面级情感分析存在的一系列问题展开相关研究,本文的主要工作内容如下:(1)本文提出一种基于层次神经网络的方面级情感分析模型,利用双向LSTM对文本信息进行处理,同时
同时定位与建图(Simultaneous Localization and Mapping,SLAM)指的是机器人在未知环境中利用自身搭载的传感器,在运动过程中通过观察到的环境信息对自身位置和姿态进行定位,并同时构建周围环境的地图。SLAM在自动驾驶、避障导航、服务机器人等方面有着广泛的应用,是智能机器人应用的核心关键技术。目前视觉SLAM研究多数假定环境是静态的,使得SLAM算法无法处理复杂多变
同时定位与建图(Simultaneous Localization and Mapping,SLAM)是移动机器人领域的关键技术之一。已经成熟的视觉SLAM算法大多假设场景是静态的,当场景中存在运动物体时会干扰特征匹配,进而对SLAM系统的定位以及建图的精度造成较大影响。所以在动态环境下,SLAM算法需要识别出场景中的运动物体。本文设计视觉SLAM算法,提升算法在动态环境下的定位精度,并生成动态环
随着空域环境的日益拥挤,针对海量的飞行目标航迹数据进行航迹起始和识别的研究,有助于深度认知空域态势,从而为空域监管提供有效支持。雷达作为获取飞行目标航迹数据的主要手段之一,在航迹起始和识别的研究中发挥着不可比拟的作用。然而,传统的雷达目标航迹起始和识别算法已经难以应对当前多样化、复杂化、大数据化的雷达探测环境。本文基于深度学习技术,分别进行了雷达目标航迹起始和识别研究。主要研究内容如下:(1)提出