论文部分内容阅读
空间天文观测和空间对地遥感技术在最近几十年取得了快速发展,大口径和长焦距已经成为当前的主要发展方向之一。空间遥感器在研制过程中会受到地面重力的影响,在运载发射过程中会受到剧烈的振动、冲击作用,入轨运行时会受到空间重力场变化和温度变化等因素的综合影响。随着口径和焦距不断增大,当由于重力、振动、冲击、温度等引起的光学系统变形导致的失调波像差对空间遥感器的成像性能造成较大影响时,在一些先进的空间遥感器中已经提出并采用了主动光学校正技术。目前针对大口径空间遥感器的主动光学校正技术,主要有主镜的面形校正技术和次镜的位姿调整校正技术。主镜的面形校正技术是通过在主镜背部设置促动器来校正主镜的面形精度误差,次镜位姿调整校正技术则是通过调节次镜在各自由度的位姿,来校正次镜的位姿误差以及补偿校正其他光学元件的位姿失调引起的系统失调波像差。次镜位姿调整校正技术相比于主镜面形校正技术,可以为光学系统提供更多的调节自由度,能够兼顾其他光学元件的失调量,也是大口径轻型空间遥感器采用机身折叠展开方案时必须具备的功能,该技术更加全面有效。本论文面向我国未来大口径空间望远镜研制的发展需求,根据目前我国大口径天文望远镜的发展现状和现有技术能力,提出了一个2.4米口径轻型空间望远镜的设计方案,通过对该空间望远镜关键技术的梳理,重点开展通过次镜位姿调整来校正光学系统失调波像差的关键技术研究。根据大口径空间望远镜的光学设计方案,开展了光学系统的失调校正建模分析。结合基本像差理论和Zernike多项式,建立了基于次镜位姿调整的光学系统失调校正模型。通过对光学系统中各反射镜的位姿失调灵敏度进行分析,建立了基于灵敏度矩阵的失调解算方法,分析得到了各反射镜的位姿精度公差要求。通过有限元分析得到光学系统中各光学元件在重力作用下的位姿失调量,并仿真分析了通过次镜位姿调整校正光学系统地面重力失调的效果。通过对空间遥感器发射入轨后的失调状态进行预估,进一步分析了通过次镜在轨位姿调整对光学系统失调的校正能力。通过仿真分析明确了光学系统失调校正对次镜位姿调整能力的需求,并简要介绍了大口径空间遥感器失调波像差的地面和在轨检测方法。根据次镜位姿调整的特点,选用六自由度平台作为次镜位姿调整的执行机构,开展了六自由度平台的运动学分析建模和控制算法的研究。采用闭环矢量法,建立了平台的运动学反解算法;建立了基于迭代逼近的平台正解算法,并采用牛顿-拉弗森数值迭代法进行数值求解。对六自由度平台的雅克比矩阵进行了建模分析,并对六自由度平台的工作空间进行了分析求解,最后通过虚拟样机的全约束法对六自由度平台的运动控制算法进行了仿真验证。根据光学系统失调校正对次镜位姿调整能力的要求,开展了高精度次镜位姿调整机构的设计工作。首先明确了对次镜调整机构的性能要求和在空间遥感器中的设计约束条件,以机构的雅克比矩阵条件数作为优化目标,在设计约束条件下开展了机构的构型参数优化设计,采用响应面优化方法,得到了最优的机构构型参数。然后开展了驱动支杆的高精度传动方案设计,通过计算分析,保证次镜调整机构的理论位姿精度满足设计要求。最后通过有限元仿真分析,对次镜调整机构的模态特性和对次镜面形精度的影响进行了仿真分析。面向空间遥感器在轨应用的特殊要求,开展了次镜调整机构的实际性能测试和试验研究。根据次镜调整机构的设计方案,研制了次镜调整机构的工程样机。针对工程样机开展了实际的刚度、运动分辨率、运动精度和有效工作空间的测试工作,并开展了机构的运载力学条件试验和在轨工况寿命试验,检验次镜调整机构能否满足大口径空间遥感器在轨应用的要求。位姿精度是次镜调整机构最重要的性能指标,为了进一步提高机构的位姿调整精度,开展了机构的运动学标定方法研究。通过误差分析建模,明确了机构的主要误差源,以各铰点的位置误差、驱动支杆的零位长度误差作为机构的误差参数,建立了六自由度平台的标定模型。根据标定方法开展了机构的标定效果仿真,并针对次镜调整机构工程样机进行了基于输出位置信息的标定实验,通过实验评价了机构标定方法的效果。本论文面向国家重大发展需求,作为我国未来大口径轻型空间望远镜研制的重点技术攻关,旨在为大口径空间遥感器通过次镜位姿调整来实现光学系统的失调波像差校正探索技术可实现方案,可以为我国未来大口径空间遥感器的研制提供关键技术支撑。