论文部分内容阅读
哈尔滨市有磨盘山水库和松花江两个供水水源,目前磨盘山水库是供水主水源,磨盘山净水厂供水能力为90万m3/d,松花江作为哈尔滨市供水热备水源,松花江水源有三个净水厂总供水能力为60万m3/d。由于松花江哈尔滨江段水质遭受到不同程度的污染,致使松花江净水厂在现有常规水处理工艺条件下的出厂水水质无法达到我国新颁布并且在2012年全部强制实施的国家生活饮用水卫生标准要求。因此,开发松花江水源水中有机污染物应急检测方法、典型有机物应急处理以及以松花江为原水的达标处理技术,对松花江水源需要启动时,净水厂出厂水可全项达到生活饮用水卫生标准106项水质指标要求有着重要的现实和长远意义。结合GB5749-2006和GB3838-2002水质指标体系的具体要求,采用气相色谱质谱联用技术对松花江水源水和三水厂出厂水中的有机污染物进行了定性检测,分别检测到有机污染物165种和137种。其中含有苯、甲苯、乙苯、间二甲苯、对二甲苯、邻二甲苯、硝基苯、萘、酞酸二丁酯、酞酸二辛酯等10种我国优先控制污染物以及卤代烃、酚、各种环己烷、多环芳烃等潜在危害物质,表明松花江水源水中苯系物应成为今后监控的重点。针对2005年松花江遭受硝基苯污染重大事件,迅速开发出气相色谱法快速测定硝基苯浓度的检测技术。通过实验研究将国标方法中的萃取剂苯改为正己烷,样品检测时间显著下降,满足应急检测的技术要求。本方法最低检测浓度为0.1μg/L,测定系列浓度(25~250μg/L)的硝基苯水溶液标准偏差(RD)为1.0~5.5μg/L,相对偏差(RSD)均小于6.5%。采用实际松花江水样加标回收率为100%~108%。与几个试验室对比结果显示,本方法与其它实验室测定结果最大偏差为6%。该方法已成功用于硝基苯污染事件水质检测工作中,为哈尔滨市恢复供水发挥了重要作用。研究了气相色谱法同时测定地表水环境质量标准中所有硝基苯类有机污染物(共10种)的技术流程,在所设定的色谱条件下,所开发的最低检测浓度均优于国标推荐方法,测定系列浓度(20~200μg/L)的硝基苯类化合物水溶液的标准偏差(RD)为0.15~3.4μg/L,相对偏差(RSD)均小于2.0%,结果也好于国标推荐方法。同时研究也发现尽管液相色谱法无法实现10种硝基苯类化合物有效分离,若遇到应急检测时,可以先用气相色谱法定性,然后再适当分类即可达到快速检测的目的。液相色谱法测定硝基苯类化合物水溶液的标准偏差(RD)为6.06~12.4μg/L,相对偏差(RSD)均小于2.0%(n=7)。加标回收率在94.7~104.3%,满足实际工作要求。检测限除硝基苯外,其它化合物均优于国标推荐方法。针对水源地可能受到的有机污染,选择对硝基氯苯和2,4-二硝基氯苯为目标化合物进行了粉末活性炭的吸附特性研究,研究结果表明:在对硝基氯苯和2,4-二硝基氯苯为5倍超标量时,分别投加20mg/L和30mg/L可以达到水源地水质控制标准;二者在粉末活性炭的吸附为物理吸附,吸附特征符合弗瑞德里希方程,对硝基氯苯的吸附动力学常数分别为1.6849(g/mg·min)(5℃),1.7742(g/mg·min)(15℃),1.8286(g/mg·min)(25℃),2,4-二硝基氯苯的吸附动力学常数分别为21.537(g/mg·min)(5℃),19.596(g/mg·min)(15℃),20.39(g/mg·min)(25℃),表明低温有利于对硝基氯苯和2,4-二硝基氯苯在粉末活性炭上吸附。本文还详细地介绍了松花江硝基苯污染期间应急处理的工程实例,指出在应对硝基苯污染过程中采用粉末活性炭吸附并结合颗粒活性炭石英砂双层滤池可以保障有效去除水中硝基苯,并确保供水安全。设计完成两套规模为5.0t/h的中试装置,并历时一年时间研究了臭氧预氧化强化混凝以及臭氧活性炭技术在松花江水源应急启动中的应用,研究结果表明:臭氧预氧化可以改善水质的混凝特性,具有助凝作用,可以节约混凝药剂12%左右;臭氧活性炭技术作为一种深度处理技术,可以满足松花江水源水的深度处理技术要求。中试结果表明:采用臭氧活性炭技术可以提高饮用水的生物稳定性,并确保达到GB5749-2006的106项水质指标要求。以上研究成果紧密结合哈尔滨供水水质中几个关键性问题开展的研究,对于全面提高哈尔滨城市供水水质具有重要的指导意义和应用价值。