论文部分内容阅读
石油是一种不可再生资源,目前原油的质量日益变劣、变重,而对轻质燃料汽、柴油以及石油化工产品丙烯、乙烯等的需求逐年增多,加之环保法规的日益严格,使得炼油企业所面临的压力日趋巨大。而动植物油是一种具有广泛来源的可再生能源,脂肪酸酯是其主要成分,由于几乎不含硫、氮以及金属而日益引起广泛重视。开发可作为石油替代资源的脂肪酸酯的有效转化技术是缓解石油资源短缺的途径之一。本文在固定床微反、小型提升管催化裂化装置上,进行了脂肪酸酯热裂化和催化裂化反应的研究。结果表明,温度对脂肪酸酯在不同催化剂上反应的影响规律大体相同。适当提高反应温度,有利于脂肪酸酯的裂化,液化气(LPG)、丙烯收率显著增加,同时干气、CO、CO2等副产物的收率增加不多。热裂化反应的转化率较低;液体产物中存在大量的含氧衍生物,气体中CO/CO2质量比小于1。而在分子筛催化剂上,液体产物中氧含量很低;原料中的氧主要以H2O、部分以CO和CO2的形式脱除,三者收率之和为11.5%左右,且CO/CO2质量比大于1。其中USY分子筛催化剂适合生产汽油、柴油,而ZSM-5催化剂的LPG、丙烯收率较高。GC-MS、FT-IR分析表明,在热裂化和催化裂化的共同作用下,脂肪酸酯分子一般首先发生脱羧、脱羰反应,再进行C-C键断裂;而且其中C-O键更容易发生断裂,生成羧酸、醛、酮等大分子的含氧衍生物。初始裂化产生的中间物种会在催化剂的酸性位上发生二次裂化、脱氧、聚合、环化、氢转移、异构化、芳构化等反应,从而生成小分子的烃类、CO、CO2、H2O等。只要催化剂存在弱酸位,二次裂化反应即可发生;且催化剂的酸性越强,二次反应发生的比例越高,生成更多的汽油、LPG等小分子;而催化剂上没有酸性位时,二次反应发生较少,液体产物中存在大量的含氧衍生物。通过原位红外分析证明了脂肪酸酯反应的初始裂化步骤(主要是C-O键的断裂),同时证实了中间物种——羧酸的存在。针对一种脂肪酸酯原料优选的反应条件和催化剂,基本上适用于任何脂肪酸酯原料。原料中饱和脂肪酸含量(主要是硬脂酸和棕榈酸)增加,LPG、丙烯、丁烯收率增加,汽油、柴油收率降低。这种变化规律不仅适用于脂肪酸酯原料的单独裂化,而且适用于脂肪酸酯原料与普通催化原料的混合裂化。和普通催化原料相比,脂肪酸酯单独裂化时,LPG、低碳烯烃收率较高,LPG中丙烯含量一般超过50%;同时,生产的汽油、柴油性质较好,几乎不含硫,汽油中芳烃含量较高。实验室研究结果表明,采用两段提升管催化裂化(TSRFCC)技术,配以适宜的催化剂,LPG收率可达45%,丙烯收率为23%;二段反应产生的汽油中芳烃含量(主要是C7、C8、C9)高达83%。在实验室研究的基础上,在18万吨/年催化裂化装置上进行了掺炼脂肪酸酯原料的工业试验研究,催化剂为胜华平衡剂(由降烯烃催化剂CORH和10wt%左右的多产丙烯催化剂LTB-2组成),反应温度为508°C~525°C。结果表明,在普通催化原料中掺炼脂肪酸酯原料是完全可行的。掺炼后主要产物的收率变化不大,LPG收率略有上升,LPG中丙烯含量增加了1.88个百分点;同时,掺炼后汽油、柴油、油浆的硫、氮含量大幅度下降,产品质量明显改善。综上,利用催化裂化工艺可以加工不同来源、不同性质的各种脂肪酸酯原料,通过催化剂和操作条件的调整,可以实现以脂肪酸酯原料生产LPG、丙烯以及清洁燃料的目的。