论文部分内容阅读
随着航空、航天以及先进能源等高技术产业的不断发展,对材料的使用性能提出越来越高的要求,特别是需求使用温度高、强度高但比重小并且稳定性好的高温结构材料。MoSi2以其高熔点、较低的密度、极好的高温抗氧化、抗腐蚀和热力学稳定性以及良好的高温韧性和电热传导性,被认为是非常具有潜力的新一代高温结构材料,但是其较低的室温韧性(2.5~3.0 MPa.m1/2)在一定程度上制约了其作为结构材料的应用。本文通过W、Al合金化MoSi2协同纳米TiC颗粒复合化制备出了纳米TiCp/(Mo,W)(Si,Al)2复合陶瓷,以进一步提高MoSi2基复合材料的性能。以Mo、W、Si、Al粉为试验原料,采用自蔓延高温合成技术制备了 MOSi2以及(Mo0.9W0.1)(Si1-xAlx)2(x=0,0.03,0.06,0.09,0.12)试样,研究分析了自蔓延高温合成的燃烧模式、产物物相组成以及显微结构。反应过程图像分析表明:W、A1合金化MoSi2的自蔓延高温合成试样的燃烧模式为非稳态燃烧模式;合成产物物相分析表明:(Mo0.9W0.1)(Si1-xAlx)2试样的物相主要为Cllb相,当x=0.06时,开始有C40型Mo(Si,Al)2相生成,并且随着Al添加量的继续增加,C40相的衍射峰强度逐渐增强;显微形貌分析表明:自蔓延高温合成产物为多孔疏松结构。以自蔓延高温合成反应制备的(Mo0.9W0.1)(Si1-xA1x)2试样粉体为原料,采用真空热压烧结制备出相对密度在95%左右的(Mo0.9W0.1)(Si1-xAlx)2陶瓷样品,物相分析结果表明:陶瓷样品的物相组成与热压烧结前基本一致,但热压烧结后C40型Mo(Si,Al)2相的衍射峰强度相比于热压烧结前样品有所降低。通过对MoSi2与(Mo0.9W0.1)(Si1-xAlx)2陶瓷样品力学性能的测试得出:添加少量W合金元素,陶瓷样品的硬度与抗弯强度增加,断裂韧性下降;在W合金化基础上,Al合金元素的加入能够有效改善陶瓷样品的断裂韧性,但其硬度与抗弯强度降低;综合对比MoSi2以及(Mo0.9W0.1)(Si1-xAlx)2陶瓷样品的力学性能得出,(Mo0.9W0.1)(Si0.94A10.06)2陶瓷的综合性能较好,其抗弯强度、硬度、断裂韧性都优于纯MoSi2陶瓷,其中断裂韧性改善最为明显,达到6.38 MPa·m1/2,较纯MoSi2陶瓷提升了 42.41%。将纳米TiC颗粒与自蔓延高温合成反应制备的(Mo0.9W0.1)(Si0.94Al0.06)2试样粉体混合均匀后制成混合粉体,然后采用真空热压烧结制备出纳米TiCp/(Moo.9W0W0.1)(Si0.94A10.06)2高致密复合陶瓷。物相分析结果表明:复合陶瓷的物相组成为Cllb相与TiC相,(Mo0.9W0.1)(Si0.94A10.06)2与TiC没有发生反应生成其他新相。通过对复合陶瓷力学性能的测试得出:纳米TiC的加入有利于改善复合陶瓷的相对密度、抗弯强度、硬度及断裂韧性;随着纳米TiC的加入量增加,其各项性能指标先增加后降低;当纳米TiC的加入量为20vol%时,复合陶瓷的综合性能最好,其硬度、抗弯强度、断裂韧性分别达到14.71 GPa、433 MPa、9.73 MPa.m1/2,较纯 MoSi2分别提升了 65.84%、68.48%、117.19%。