论文部分内容阅读
本研究以367个城市为研究对象,用聚类分析划分城市群,从城市群角度探明大气污染的时空分布特征;对不同城市群大气颗粒物与气态污染物的相关性进行分析,明确不同城市群大气污染特征;对区域传输特征进行分析,对比不同城市群的区域传输特征差异;并定量研究植物对PM2.5的阻滞吸附能力及机理,以探索有效的不同城市群大气污染治理方式。结论如下:(1)年际变化上,PM2.5,PM10,SO2和NO2浓度在2016年有所下降,而O3和CO浓度值有所增长。PM2.5,SO2和NO2浓度值削减率最高的是东北城市群,PM10削减率最高的是北部沿海城市群。季节分布上,大气污染物浓度季节特征总体表现为冬>秋>春>夏。月际变化上,PM2.5与PM10呈现“U型”月变化特征,CO与S02月变化在有暖气的城市群,取暖季月变化趋势呈“深U”变化。O3的最高值通常出现在6月和7月。日变化上,PM25与PM10浓度日变化呈现出在10-14点到达最高值,在16-20点达到最低值。SO2,NO2和CO的日变化特征相似,呈现“双峰双谷”的变化特征,O3呈现出“单峰双谷”的特征。(2)在空间分布上,在东北城市群,省会城市SO2及NO2浓度较高;在北部沿海城市群,河北省南部和山东省SO2,NO2及CO浓度较高;在东部沿海城市群中,江苏省大气颗粒物污染和SO2污染较严重,以上海为中心的城市NO2污染严重;在南部沿海城市群,控制粤港澳大湾区和河南省大气污染是控制该区域城市群大气污染的关键。在黄河中游城市群,减少山西地区的燃煤以减少SO2和CO的排放,是改善区域大气污染状况的关键。在长江中游城市群,以武汉、宜昌和合肥为中心的城市群污染最为严重。在大西南城市群,四川盆地地区大气颗粒物与NO2的排放控制对大气污染改善尤为重要。在大西北城市群,大气污染控制应加强土地荒漠化的治理,减少沙尘等污染。城市群间的污染物有较强相关性,SO2在城市沿海城市群间的区域传输和交换作用更为明显。(3)受区域传输影响最严重的是北部沿海城市群及东部沿海城市群,从城市类型来看,海岛城市受区域传输的影响最为严重。来自北京市南部的气流是PM25主要区域传输通道,来自偏西西北方向的气流是PM10的主要传输通道,SO2与N02浓度值最高的均是来自西北方向的气流,来自东北方向的气流利于CO的产生,来自河北南部和山东的气流导致O3浓度升高。河北省南部和山东省是北京市PM2.5最重要的潜在源区。PM10潜在源区包括河北省南部,山东省西南部以及山西省等。河北省南部,山东省,河南省和陕西省是SO2的潜在源区。NO2的潜在源区包括河北省南部,山东省和山西省。CO的区域传输较少。O3的潜在源区分布在河北南部,山东省和山西省。过去十年间,山东、天津和河南地区PM10的贡献有所增加,而内蒙古和蒙古地区的贡献有所下降。(4)被试树种中单位叶面积叶片吸附PM2.5能力最强的是杉木,吸附能力最弱的是银杏。由于树种间单株叶面积差异较大,因此单株树种阻滞吸附PM2.5的总量也差异较大。其中,杉木是单株树种阻滞吸附PM2.5能力最强的树种,吸附能力超过1OOmg的树种有木姜子,马尾松,华山松,构树,刺桐,栾树和榕树。对于单株树种来说,总体上针叶树种单株树种吸附能力强于阔叶树种。单位叶面积阻滞吸附PM2.5量和沟槽比例及叶毛数量之间有显著的正相关关系,气孔大小与阻滞吸附PM2.5的量存在显著相关性,气孔较小的相关系数大于气孔较大的一组,气孔尺寸越大,对阻滞吸附PM2.5能力的抑制效果越小。北京市树种阻滞吸附PM2.5的能力较重庆市强,这是由于相同的树种,在北京比在重庆有较多的叶毛、较大的沟槽比例及气孔大小和气孔密度。