表面钝化对SiC纳米线结构和电学性能的影响

来源 :燕山大学 | 被引量 : 0次 | 上传用户:raulhanlin
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
作为半导体材料,碳化硅由于其高临界击穿场强、高导热系数、高电子饱和、宽带隙、热膨胀系数小、介电常数小、化学稳定性好、热稳定性和抗辐射能力强等特点,受到越来越多学者的关注,并在激光、紫外探测器、微波和毫米波功率器件的应用等方面获得了一些优异成果。碳化硅纳米线(SiCNWs)表面存在大量的断键,这些不饱和的悬挂键会导致SiCNWs电学和光学性质的不稳定,从而制约了它在微纳电子器件等方面的应用,而表面改性是提高性能稳定的有效途径。稳定性、输运性质和介电性能对SiCNWs微纳电子器件的研发和应用具有重要作用,基于第一性原理计算,以及输运理论和极化驰豫理论,本文对2H-SiCNWs进行了系统的理论研究,分别研究了不同钝化原子和基团对SiCNWs结构、导电性以及介电性能的影响,为未来碳化硅材料的调控与应用提供了理论指导。论文主要内容如下:首先,对半导体纳米材料发展历史以及所涉及的基本理论与模拟软件进行了详细的说明。然后,用CASTEP模块构建了碳化硅纳米线,并进行了 H原子、F原子和OH基团的表面钝化,通过分析钝化前后的结构数据,研究了不同极性原子和基团钝化对SiCNWs的晶格结构和电学结构的影响。最后,依据输运理论和偶极弛豫模型,数值模拟了钝化前后纳米线的介电性能数据和电导数据,深入研究了不同原子钝化、温度和频率等对2H-SiCNWs的导电性和介电性能的影响。研究表明钝化了提高SiCNWs的稳定性,在极性原子(基团)的钝化过程中发生了极化,钝化使纳米线表面的电学结构发生了改变且SiCNWs的迁移率与其散射机制密切相关。
其他文献
随着传统化石能源的急剧消耗与污染物排放的增加,能源与环境问题成为本世纪的重大挑战。氢能源主要优点在于能量密度高、来源丰富、燃烧产物只有水,被认为是取代传统化石能源的最佳候选。在此背景下,本文利用一种简易的方式——电化学沉积制备了电化学析氢反应催化剂。为了找出能够替代贵金属的过渡族金属催化剂,用电化学沉积方法对铜片进行了修饰,得到了析氢过电势284 m V的镍锰催化剂,对它进行掺杂非金属元素,得到了
稀土发光材料因具有低辐射损伤、高化学稳定性、弱自发荧光、强吸收能力等特性,使得其在稀土功能材料领域中的研究价值均位居前列。NaGdF4因具有出色的光磁性能,低声子能量,高上转换效率以及紫外-红外较宽的光学透过性而被广泛关注。本文通过第一性原理计算与实验制备相结合的方法,从晶形结构、发光调控和机理分析角度研究NaGdF4:Er3+/Yb3+上转换纳米发光材料,并着重考察其在双光束共同激发时的发光性能
碳化硅(SiC)材料是第三代宽带隙半导体,具有许多优越的物理性能,在纳米光电器件中具有广泛的应用。碳化硅纳米管(SiCNTs)是一种重要的低维半导体材料,它不仅保留了 SiC晶体的优良特性,还表现出纳米管特有的一些性质,例如高的内外表面活性、电子结构可调、热稳定性好、能在极端恶劣条件下工作等性能,被广泛应用于高频、高击穿场强、高温、高导热和抗辐射等技术领域。掺杂可以调节SiCNTs的物理性能,以获
表面增强荧光(Surface Enhanced Fluorescence,SEF)是指分布于贵金属表面或其溶胶附近的荧光分子,其荧光发射强度较之自由态荧光发射强度大大增强的现象。目前对于荧光增强基底的研究已经成为焦点,但是很多具有纳米结构的荧光增强基底存在着不足,如:合成步骤复杂、成本较高等,这些问题对表面增强荧光的应用与发展带来一定的阻碍。基于此,本论文通过在具有大规模纳米结构的天然基底表面构筑
热电材料是一种利用固体内部载流子以及声子的运动,实现热能和电能直接相互转换的功能材料。在清洁能源与制冷等领域有着十分广阔的应用前景。Bi2Te3基合金作为室温下性能最好的热电材料,一直以来备受人们关注。近年来p型Bi2Te3基材料的热电性能获得很大提升,相比之下,n型Bi2Te3基热电材料的热电性能的提升较小,导致由p、n腿组合构成的热电器件的转换效率难以获得明显提升,制约了热电器件的大规模应用。
近年来,氢能源因其产物清洁,环保,而引起了全世界的关注,被视为可替代不可再生能源的能源。电解水制氢是常用且有效的方法,但因为过程中能量损耗严重,而受到限制,因此,寻找一种高效的析氢电催化剂是解决问题的关键。Pt等贵金属作为电催化剂来说具有着非常好的析氢性能,但因为成本问题而有着自身的局限性,无法广泛应用。因此,镍、铁等过渡金属走入了人们的视线。本文制备了镍钨合金电催化剂并探究了其在碱性溶液中的析氢
含铜、磷、铬、镍、硅等合金元素的耐候钢是一种重要的防腐材料用钢。近年来,随着海洋资源在世界范围内的大量开发和利用,耐候钢具有优异的耐腐蚀性能和良好的力学性能,成为沿海地区大型结构桥梁钢的主要材料。本文研究了不同Ti含量(0.014%、0.044%、0.084%、0.144%)对Q420qENH钢力学性能及初期腐蚀行为的影响,探索了其强韧化机理。通过对试验钢进行显微组织表征、拉伸性能和冲击性能的测试
随着科技的飞速发展,出现了大量电子设备,设备的频繁使用导致电磁波无处不在,电磁辐射在损伤人类身体健康的同时还会影响电子设备的正常运行,因此高性能电磁吸波材料成为人们的研究重点。在实际应用中人们期望得到吸波性能强,质量轻,厚度薄且有效频带宽等特点的理想型吸波材料。金属有机骨架(MOF)材料具有多样化的空间结构,其金属粒子尺寸、占位、孔径、比表面积等可在制备过程中进行调节,凭借这些特点其在超级电容器、
以超大型钨矿石门寺钨矿为主要研究对象,采用勘查区找矿预测理论与方法。明确了该区细脉浸染型成矿地质体为燕山期斑状黑云母花岗岩,热液隐爆角砾岩型矿体和石英大脉型矿体为花岗斑岩;成矿构造为近EW向断裂构造,NNW向断裂构造,控制石英矿脉的分布,成矿结构面为燕山期斑状黑云母花岗岩顶部接触面,与似伟晶岩壳分布的大体一致,控制大规模浸染状矿化的分布,花岗斑岩及隐爆角砾岩边部成矿结构面,控制大规模隐爆角砾岩型矿
氧化铝陶瓷由于优良的耐热性、硬度、耐腐蚀性等性质,在航空航天材料热防护涂层领域有广泛的应用前景,但是脆性、低韧性及热应力敏感等缺点使其应用受到限制。使用激光熔覆原位制造技术制造颗粒增强型氧化铝陶瓷可以有效改善其脆性和韧性问题,为制造出优良的颗粒增强型氧化铝涂层,本文对使用四氧化三铁和铝的混合粉末在钛合金基板上激光熔覆原位制造Al2O3-Fe颗粒增强型复合涂层的过程进行热-力分析研究,为实际工程制造