论文部分内容阅读
预应力混凝土桥梁长期暴露于外部环境,承受日益增长的交通荷载,导致桥梁长期性能不断退化。实时获取各项性能变化能够及时对桥梁进行养护,从而大幅度缩减维修成本,提高养护措施的有效性。目前桥梁长期性能预测手段主要集中于试验或者经验层面,仅凭现有的预测手段无法深入了解长期性能退化规律,导致越来越多的桥梁错过最佳养护时间。因此利用数值分析快速准确预测预应力混凝土桥梁长期性能演变已成为各国桥梁工作者的研究热点课题,但影响长期性能演变的因素众多,现有模拟手段无法对其进行准确预测。近年来随着计算机硬件水平不断提升与数值分析平台的推陈出新,能够实现对预应力混凝土桥梁的精细化分析与长期性能的准确预测。本文以提出预应力混凝土桥梁长期变形的准确分析方法为目的,研究环境温度与车辆荷载作用下预应力混凝土桥梁长期变形行为,主要创新工作与研究成果如下:
(1)提出自然环境下适合于各类桥型的精细温度效应分析方法,旨在快速准确分析桥梁结构在多变环境下的温度分布、热应力与变形。将日照作用下构件所受遮挡分为永久遮挡,自遮挡和相互遮挡,并提出一种适合于空间结构的三维光线遮挡算法;提出分析缆索结构空间温度分布的多尺度建模方法,能够获得缆索截面的等效热物性参数、截面以及空间温度变化;提出混凝土封闭空间内部空气换热分析方法,能够同时考虑对流与辐射两种换热方式;基于计算流体力学(CFD)方法对结构表面换热系数进行求解,发现表面换热系数分布不均匀;为提高分析效率,提出基于子结构技术的桥梁高效分析方法。研究表明,考虑三维光线遮挡能够提高温度与热应力分布的不均匀性,最大热应力峰值通常出现在行车高峰期,需考虑活荷载和热应力的叠加效应对桥梁构件疲劳寿命的影响。基于某悬索桥的精细温度分析发现,太阳辐射作用下大跨度悬索桥的热动态特性变化主要由热应力刚化效应引起。
(2)针对车辆荷载的随机性、环境温度作用的长期性与随机性,分别提出随机车流荷载模型、长期时变精细温度分布预测方法与随机环境温度作用等效方法。基于车型录像与动态称重系统(WIM)数据,建立随机车流荷载模型,并对其进行数值实现,生成的随机车辆荷载可等效为均布荷载直接施加到桥梁表面,避免以往研究中不同软件之间繁琐的数据传递流程。为克服(1)中精细温度效应分析方法只限于连续分析几天或几十天温度变化的缺陷,提出长期时变精细温度分布预测方法,通过对几天内的精细温度分布插值得到一年或连续几年的精细温度时程变化。提出随机环境温度作用等效方法并从理论上验证其可行性,根据随机产生的天气类型与直接辐射因子,可直接修正晴空辐射下桥梁内部温度值,获得随机温度场,避免随机天气下精细温度分布计算,加快随机环境温度作用等效过程。
(3)考虑车辆疲劳效应、混凝土塑性损伤演化规律、混凝土收缩徐变等因素的相互耦合机制,建立循环荷载下考虑疲劳徐变与损伤的混凝土徐变本构模型,模型中重新定义疲劳徐变应变,表达式中各参数的物理意义更加明确。在此基础上,提出随机车流作用下预应力混凝土桥梁长期变形分析方法。为分析变幅荷载下的预应力损失,推导并建立预应力损失的微分型表达式。研究表明,车辆荷载(尤其重车)作用能够大幅度增加预应力混凝土桥梁长期变形,车辆随机性对长期变形的影响逐年增加。预应力锚固区域的混凝土静态受拉破坏和车辆荷载作用下受拉疲劳破坏能够引起主梁底板开裂,桥梁过度下挠过程中混凝土静态受拉破坏能够引起墩顶横隔板与过人孔表面裂纹开裂。
(4)综合(1)、(2)、(3)的研究成果,建立考虑循环温度与车辆荷载的混凝土徐变本构模型,提出环境温度与车辆荷载作用下预应力混凝土桥梁长期变形分析方法并研究长期变形的温度相关性。研究表明,桥梁竣工时的环境温度能够改变混凝土时变行为与预应力损失的耦合效应,较高温度下的预应力损失速率增加与材料弹性模量降低是引起初期变形增加的主要原因。施加不同的温度分布模式能够改变长期变形发展规律,日照温度梯度引起的某跨长期变形发展方向与瞬时弹性热变形方向相反,连续梁桥长期变形发展规律与日照结束后的主梁内部残余应力有关。如只关注长期变形发展,可在分析过程中忽略天气随机性的影响。腹板内外升温速率差异与预应力损失能够引起腹板内侧开裂。
(1)提出自然环境下适合于各类桥型的精细温度效应分析方法,旨在快速准确分析桥梁结构在多变环境下的温度分布、热应力与变形。将日照作用下构件所受遮挡分为永久遮挡,自遮挡和相互遮挡,并提出一种适合于空间结构的三维光线遮挡算法;提出分析缆索结构空间温度分布的多尺度建模方法,能够获得缆索截面的等效热物性参数、截面以及空间温度变化;提出混凝土封闭空间内部空气换热分析方法,能够同时考虑对流与辐射两种换热方式;基于计算流体力学(CFD)方法对结构表面换热系数进行求解,发现表面换热系数分布不均匀;为提高分析效率,提出基于子结构技术的桥梁高效分析方法。研究表明,考虑三维光线遮挡能够提高温度与热应力分布的不均匀性,最大热应力峰值通常出现在行车高峰期,需考虑活荷载和热应力的叠加效应对桥梁构件疲劳寿命的影响。基于某悬索桥的精细温度分析发现,太阳辐射作用下大跨度悬索桥的热动态特性变化主要由热应力刚化效应引起。
(2)针对车辆荷载的随机性、环境温度作用的长期性与随机性,分别提出随机车流荷载模型、长期时变精细温度分布预测方法与随机环境温度作用等效方法。基于车型录像与动态称重系统(WIM)数据,建立随机车流荷载模型,并对其进行数值实现,生成的随机车辆荷载可等效为均布荷载直接施加到桥梁表面,避免以往研究中不同软件之间繁琐的数据传递流程。为克服(1)中精细温度效应分析方法只限于连续分析几天或几十天温度变化的缺陷,提出长期时变精细温度分布预测方法,通过对几天内的精细温度分布插值得到一年或连续几年的精细温度时程变化。提出随机环境温度作用等效方法并从理论上验证其可行性,根据随机产生的天气类型与直接辐射因子,可直接修正晴空辐射下桥梁内部温度值,获得随机温度场,避免随机天气下精细温度分布计算,加快随机环境温度作用等效过程。
(3)考虑车辆疲劳效应、混凝土塑性损伤演化规律、混凝土收缩徐变等因素的相互耦合机制,建立循环荷载下考虑疲劳徐变与损伤的混凝土徐变本构模型,模型中重新定义疲劳徐变应变,表达式中各参数的物理意义更加明确。在此基础上,提出随机车流作用下预应力混凝土桥梁长期变形分析方法。为分析变幅荷载下的预应力损失,推导并建立预应力损失的微分型表达式。研究表明,车辆荷载(尤其重车)作用能够大幅度增加预应力混凝土桥梁长期变形,车辆随机性对长期变形的影响逐年增加。预应力锚固区域的混凝土静态受拉破坏和车辆荷载作用下受拉疲劳破坏能够引起主梁底板开裂,桥梁过度下挠过程中混凝土静态受拉破坏能够引起墩顶横隔板与过人孔表面裂纹开裂。
(4)综合(1)、(2)、(3)的研究成果,建立考虑循环温度与车辆荷载的混凝土徐变本构模型,提出环境温度与车辆荷载作用下预应力混凝土桥梁长期变形分析方法并研究长期变形的温度相关性。研究表明,桥梁竣工时的环境温度能够改变混凝土时变行为与预应力损失的耦合效应,较高温度下的预应力损失速率增加与材料弹性模量降低是引起初期变形增加的主要原因。施加不同的温度分布模式能够改变长期变形发展规律,日照温度梯度引起的某跨长期变形发展方向与瞬时弹性热变形方向相反,连续梁桥长期变形发展规律与日照结束后的主梁内部残余应力有关。如只关注长期变形发展,可在分析过程中忽略天气随机性的影响。腹板内外升温速率差异与预应力损失能够引起腹板内侧开裂。