论文部分内容阅读
蛋白质的柔性动态结构对蛋白质的功能十分重要,一直以来是很多科学家研究的重要方向。红外光谱是一种可以探测物质超快变化运动的重要手段,其探测时间分辨率在飞秒和皮秒级别,空间分辨率在原子分子尺度,可以灵敏快速表征蛋白质的超快构象变化,并且其二维红外光谱可以提供更多的结构信息。一直以来,为了解析蛋白质的动力学特征,很多的科学家都对生物大分子的红外光谱进行了模拟和计算。静电图谱方法是一种最主要的方法,并且已经取得了不错的结果。它可以通过溶质在不同的溶液中的红外光谱,描述溶质溶剂相互作用,通过在蛋白质体系中的光谱,表征肽链形成二级结构的过程,特定位点处的蛋白构象变化等。但是它并没有定量地计算红外光谱,图谱是通过数据拟合得到的,且图谱只针对特定的溶剂,在极性很大的溶剂中不能得到较好的结果。我们自主研发的量子振动微扰方法,可以定量、快速准确地获得红外光谱。乳酸脱氢酶已经被广泛深入地研究了几十年,是参与生物新陈代谢碳循环中重要的酶。它是一个四聚体蛋白质,在每个活性中心处,与辅酶烟酰胺腺嘌呤二核苷酸共同作用,催化丙酮酸与乳酸的相互转化。最近,从同位素标记的红外光谱中得到,乳酸脱氢酶的活性中心存在构象异质性,并且对应于乳酸脱氢酶的不同催化反应速率。在此,我们利用量子振动微扰理论,对人心脏处的乳酸脱氢酶的四聚体蛋白质进行了分子动力学模拟,然后计算其中底物丙酮酸羰基伸缩振动的一维和二维傅里叶变换红外光谱。发现每个单体的红外线形不均匀地展宽,并且与整个四聚体酶的红外吸收范围相同,表明在乳酸脱氢酶的四个活性中心处具有相同的构象异质性。然而,在不同单体活性中心处的动态平衡构象却不一样,使每个单体的红外线形具有不同的半峰宽度和峰值,这对应于实验中观察到的光谱多重峰。在活性中心处,底物转化为产物是在有限的时间内发生的,这种不能完全统计的,发生在一段时间内的米凯利斯复合物的构象分布称为活性中心异质性。活性中心异质性与构象异质性的区别在于,酶-底物的复合物是随机形成的,仅能选取特定的构象分布,尽管它也是由势能面控制产生的构象异质性,但却不能遍历所有可能的构象。这是因为有酶翻转的限制,如在单酶实验中表示为等待时间的分布,即反应速率。本研究揭示了在实验和计算中所观察到的米氏复合物羰基伸缩振动的不同吸收峰是由具有不同构象分布的活性中心所产生,由它们的谱线形状叠加而成。并且,具有不同分布的活性中心不能互相转化,正如实验中所发现的那样,对应它们的不同反应速率。我们在本篇文章中阐述的活性中心异质性机制与来自同位素标记红外光谱和温度跳跃弛豫光谱中的动力学模型完全一致。