论文部分内容阅读
图像分割是一种重要的图像处理技术,也是计算机视觉领域低层次视觉中的主要问题,同时它又是一个经典难题。图像分割是由图像处理进到图像分析的关键步骤并且在图像工程中占据重要的位置。一方面,它是目标表达的基础,对特征测量有重要的影响;另一方面,图像分割及其基于分割的目标表达、特征提取和参数测量等将原始图像转化为更抽象更紧凑的形式,使得更高层的图像分析和理解成为可能。在各种图像应用中,只要需对图像目标进行提取、测量等都离不开图像分割。因此,众多学者一直致力于图像分割方法的研究,并提出了许多行之有效的分割方法。本论文的主要目的是使用数学形态学的思想进行图像分割。故首先在文章中我们详细的介绍了数学形态学的起源、发展,并从二值形态学出发到灰度形态学着重研究了数学形态学的膨胀、腐蚀、开、闭等各种运算和性质。然后,我们分别对基于形态学的边缘检测和基于形态学的区域分割(即分水岭分割)进行了讨论。在基于形态学的边缘检测方面,基于传统的形态学边缘检测算子,结合多尺度的概念,我们提出了一种新的多尺度形态学边缘检测算法。实验的结果表明,本文提出的形态学边缘检测算法,与传统的边缘检测算子相比,具有较好的抗噪性,并且检测出的边缘平滑性好,特征清晰。在基于形态学的区域分割方面,我们提出了一种基于传统标记提取的多级标记提取分水岭分割算法,与传统分水岭算法相比较,多级标记提取分水岭分割算法使标记提取更具针对性,在保持物体轮廓的同时,能有效抑制过度分割现象。同时我们还提出了结合多级标记提取分水岭分割与图像分形维数的一种改进算法用于对自然背景下人造目标的提取。实验结果证明,该方法能有效抑制自然背景,并提取出人造目标。