论文部分内容阅读
生物荧光显微镜采用荧光标记技术对生物体进行特异性结构和功能成像,是目前广泛使用的生物成像研究工具。其中光片荧光显微镜在对活体生物长时间高速成像方面具有独特的优势。光片显微镜采用照明和成像正交的光路结构,可以对生物样本进行快速片层面照明成像。与传统荧光显微镜相比,成像速度快且没有非焦面荧光成像干扰和光漂白问题。新型双光子光片显微镜进一步地发展了光片显微镜的优势,采用受生物体散射影响小的近红外波段飞秒脉冲光照明,利用扫描器件快速扫描形成的双光子虚拟光片,可以实现对生物深处大视场光片照明成像。但当前先进双光子光片显微镜的高分辨率(1μm)光片照明深度局限在170μm×170μm。这是因为活体生物组织是折射率不均匀的光学介质,双光子照明光在传播到生物组织深处的过程中会受到生物像差的影响,使得双光子照明聚焦光点严重弥散,能量集中度下降,光片厚度显著增加,严重时甚至无法激发荧光成像。针对上述问题,为消除生物像差的影响,本论文将直接波前探测自适应光学技术应用于双光子光片显微镜照明光路中,开展以下研究工作:针对自适应波前校正和双光子光片显微镜有机结合的问题,根据双光子光片显微镜的扫描特点和生物像差空间等晕区分布特性,提出一种双光子光片和自适应光学分等晕区波前校正成像的结合方法:将双光子光片扫描过程分解为局域扫描和全域扫描两个阶段。其中局域扫描阶段控制在等晕区范围内,以保证正确的波前校正;全域扫描阶段则解决跨等晕区的视场衔接问题,获得大视场下的校正与成像。通过利用高速扫描器件声光梯度可调变焦透镜(Tunable Acoustic Gradient lens,TAG)和倾斜镜扫描双光子焦点实现局域性的等晕区扫描,利用液晶空间光调制器(Liquid Crystal On Silicon,LCOS)校正此等晕区内的生物像差,并轴向变焦完成不同等晕区的全域扫描校正拼接,在保持薄的高分辨率光片情况下,拼接扫描各等晕区为高分辨率大视场光片;同时提出利用连续可调扩束器,改变入射光束在显微物镜后瞳面处的光束口径,实现了可与自适应波前校正相结合,0.6μm~1.2μm厚度可调的300μm×300μm高分辨拼接大视场光片显微镜。针对双光子光片显微镜照明方向生物深处弱荧光信号难以实现波前探测的问题,提出在双光子光片显微镜照明光路中进行生物像差探测时,利用连续可调扩束器调小显微物镜使用数值孔径(Numerical Aperture,NA),得到受生物像差影响小的双光子激发焦点,将其作为荧光导星与等晕区解扫描技术相结合,实现同一等晕区内荧光探测信号增强的波前探测方法。为充分利用有限的荧光信号,选择使用开环光路结构和高增益的哈特曼EMCCD相机,并改进质心探测算法为相关探测算法提高应对弱荧光低信噪比下的哈特曼探测能力。在实现全域内不同等晕区的波前探测时,发现使用现有光路结构中的LCOS变焦完成不同等晕区的像差探测时,会使哈特曼探测器中探测到离焦像差,影响哈特曼探测器的探测能力。故提出在激发光路和像差探测光路的共光路部分引入消色差变焦透镜,消除变焦轴向移动探测不同等晕区生物像差时对哈特曼探测能力的影响,实现光片视场扩展下可同时进行波前探测和波前校正。为实现自适应波前校正和波前探测的有机配合,根据生物像差随时间分钟甚至小时级缓慢变化的特点,提出逐等晕区像差探测,保存全部像差后再进行全域内一次性对应各等晕区的波前校正扫描成像的方案。由于生物浅层处像差对于双光子光片影响较小,随着照明深度逐渐增加,像差对双光子光片具有显著影响,且深层处的等晕区大小一般在30~60μm,故对上述300μm×300μm大小的双光子光片实行浅层150μm×300μm不校正生物像差,后150μm×300μm深处由浅及深按照60μm×60μm,60μm×60μm和30μm×30μm的等晕区划分,并给出此21个扫描区域的波前探测和波前校正的扫描实现策略,最终完成单层300μm×300μm大小双光子光片的扫描校正时间为100ms,在完成自适应校正生物像差的同时保持系统快速面成像的优势。结合以上研究,理论分析和计算了自适应双光子光片显微镜系统的设计参数;完成了系统的光学设计,机械设计和控制设计;搭建了自适应双光子光片显微镜系统,并利用荧光微珠,若丹明荧光染料溶液测试了系统的分辨率,扫描视场和自适应波前探测和校正的有效性;最终对DAPI染色受精后48小时的斑马鱼胚胎进行了生物像差自适应校正成像,校正前后成像细节和成像对比度显著提高,实现了直接波前探测自适应光学在双光子光片显微镜照明光路中的有效应用。以上研究工作使得自适应双光子光片显微镜在活体生物组织中实现高分辨大视场快速成像观察成为可能,同时为自适应光学在三光子光片乃至四光子光片显微中的应用提供参考。