基于大环草酰胺配体铜、镍配合物的合成、结构及可见光催化产氢性能的研究

被引量 : 0次 | 上传用户:Susan616
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本论文主要合成了八个基于大环草酰胺配体铜或镍的单核配合物,并构建了以CuL1为催化剂、氧杂蒽醌有机染料曙红EY(醇溶)为光敏剂和三乙胺TEA为牺牲剂的完全不含贵金属的三组分光催化产氢体系。具体内容如下:1、以N,N’-二(甲酰基苯基)草酰胺(L)为配体,合成了八个大环草酰胺配合物CuL1、CuL2、CuL3、CuL4、NiL1、NiL2、NiL3和NiL4,并通过X-射线单晶衍射、质谱(ESI-MS)、红外(IR)、元素分析表征手段和热重进行了表征和热稳定性分析。2、构建了以配合物CuL1为催化剂、
其他文献
当前太阳能电池器件生产工艺中,存在着诸多问题,比如原材料的生产能耗较高,p-n结制备能耗也居高不下,生产工艺流程复杂等。解决以上能耗问题和工艺问题的一项重要途径就是:利
石墨烯,一种二维单原子层,由sp2杂化碳原子构成的六角晶格蜂窝状结构材料。自2004年发现以来,由于其优异的电学,光学,热学、力学等性能而倍受人们的关注,且赋予其在诸多领域的广泛
本文主要包括两部分的研究。一是溶剂对碳系填充型导电聚合物电性能的影响。采用基团贡献法估算了自制丙烯酸聚合物的溶解度参数,在此基础上,选择了一种合适的混合溶剂,研制出了
多环芳烃(PAH)分子,不仅具有类似石墨烯的结构,还显示独特的理化特性和优异的自组装性能,在场效应晶体管、发光二极管、太阳能电池和超分子材料领域有着重要应用前景。目前对多环芳烃的研究集中在由全碳组成的分子上,而对含有杂原子的衍生物研究还很少见。通过在PAH骨架中引入氮、氟、硫等杂原子的多环芳烃衍生物,可以通过改变分子的电子亲合势、偶极等,在诸如晶体生长、液晶相及光电性能等方面产生巨大的影响,成为一
学位
锂离子电池作为新一代的高能二次能源,具有工作电压高,容量高,寿命长和热稳定性好的优点,一直受到人们的广泛欢迎,但是随着对电动汽车等高消耗功率电器的研究开发,人们迫切需要找到一种具有高倍率充放电性能的电极材料。LiCoO_2作为最早商业化的锂离子电池正极材料,仍然是当前市场的主流,它稳定的放电平台、出色的循环性能都是其它材料所不可比拟的,因此,本文里我们尝试了包覆的方法对LiCoO_2进行了改性研究
聚酰胺.胺(PAMAM)树状大分子(Dendrimers)是80年代中期出现的一类三维高度有序、可从分子水平上控制、设计分子大小、形状、结构和功能基团的新型高分子材料。由于具有精确的
微生物燃料电池(MEC)可以利用生物质氢发酵废水作为产氢的供料,进而提高了生物质资源的利用率。而对MEC产氢技术的利用,有两个较大制约因素,一是作为阴极催化剂的Pt成本过高、二是暗发酵产氢过程中产生的丁酸对于MEC中的阳极微生物不容易直接利用,使得MEC处理复杂的废液时产氢性能下降。针对上述问题,本实验首先考察了纳米MoS_2代替Pt作为阴极催化剂并进行MEC产氢的可行性,结果表明:在负载比例20