论文部分内容阅读
稻属(Oryza L.)中由2个栽培稻种和20多个野生稻种组成,广泛分布于全球热带与亚热带地区。具有AA基因组的2个二倍体(2n=24)栽培稻种是亚洲栽培稻种(O. sativa L.)和非洲栽培稻种(O. glaberrima Steud)。野生稻种有二倍体(2n=24)和四倍体(2n=48)2种,目前,已阐明了AA、BB、CC、BBCC、CCDD、EE、FF、GG、HHJJ和HHKK共10个基因组代表所有已确定的野生稻种。野生稻种蕴藏有抗病虫害和耐受不良环境等有潜在利用价值的重要基因。尽管AA基因组的野生稻能够与栽培稻进行杂交,在水稻育种上得到应用,但是丰富的野生稻遗传多样性这一宝贵财富仍然未能得到很好的发掘和利用。药用野生稻是最具研究和利用价值的我国3种野生稻资源之一,为了把药用野生稻的优异基因渗入到栽培稻中,并为克隆抗稻飞虱和抗白叶枯病基因奠定基础,本文进行了如下研究: 1.利用RFLP和GISH分析建立完整的一套药用野生稻异源单体附加系 本研究通过粳稻品种(Oryza sativa L. ssp. Japonica)(AA基因组,2n=24)H-1493和来自中国的一个编号药用野生稻(O. officinalis)(CC基因组,2n=24)进行种间杂交,然后,杂种后代再与轮回亲本H-1493进行连续回交,通过幼胚拯救技术获得杂种及其回交后代植株。后代F1和BC1植株是完全雄性不育的,基因组原位杂交(GISH)分析显示,F1植株为24条染色体,其中12染色体显示绿色杂交信号,为药用野生稻的染色体,另外12条着有红色染料的是栽培稻染色体,所以,F;植株为AC基因组:BC,植株有36条染色体,其中来自药用野生稻的12条染色体被“喷涂”成绿色,另外24条显示红色的染色体则来自栽培稻H一1493,故BC:植株为AAC基因组。在获得的84个BCZ植株中,植株染色体数目从2n到2n+1l分布。应用均匀分布在水稻12染色体上192个RFLP探针对BC:后代进行Southem分析,根据禾本科植物之间广泛的同线性关系,确定了非整倍体植株中附加的外源药用野生稻染色体与相应栽培稻染色体的同线群关系。鉴于应用这种比较方法的局限,我们并不能确定分布在药用野生稻染色体上RfLP标记的顺序。除了药用野生稻第1和3染色体在回交过程中分别发生了断裂和错接之外,2个物种的RFLP遗传图显示出很好的同线性关系。通过RfLP和GISH分析,25个异源单体附加系(MAALs)(2n二25,AA+C)被分为12个同线群。在所有确定的12个异源单体附加系中,MAA工1、2、3、5、7和10各有1个植株;MAALS、n和12各有2个植株;MAAL6和9各有4个植株;MAAL4有5个植株。除了M人ALS和7,一些外源染色体片段的易位、重复和丢失导致的外源染色体的重排,也在不同的异源单体附加系中被检测到。同时,本研究也对所有BCZ后代中51个非整倍体植株进行Southem分析,发现它们附加了不同的药用野生稻C组染色体。在BC:后代群体中,12不同的C染色体出现在所有非整倍体中的频率为4.2一16.1%。所以,外源药用野生稻的染色体并不是以均等的机会从异源三倍体后代(AAC)传递到BCZ后代群体中。 综上所述,本研究建立这样一套完整的药用野生稻异源单体附加系,为发掘利用药用野生稻基因组和实施遗传学研究提供了一个新的操作平台。同时,我们的结果也暗示着比较RFLP遗传图和 GISH分析是跟踪栽培稻和野生稻杂种后代外源染色体渗入的行之有效的方法。2.整倍体后代RFLP的分析 利用174个多态性的侧几P探针对整倍体后代进行了Southem分析,发现来自不同染色体上的R250、C597、Rll64、C488和G1465总共5个犯几P标记,检测到亲本药用野生稻特异的带型。在全部29个整倍体后代中有14 II个表现出了亲本药用野生稻特异的渗入片段(48.3%)。每个渗入系后代中检测到1一3个不相同的野生稻渗入片段。同时还发现很多渗入系中检测出的渗入发生区域是相同的。其中,位于第5染色体短臂端部的标记C597在13个植株中检测到药用野生稻特异的带型,是检测到的5个渗入探针标记中最高的,这可能意味着该渗入位点是渗入重组的“热点”区域。渗入位点大多发生在染色体的端部、近端部或染色体臂的中部,着丝粒附近发生的渗入极少,暗示着着丝粒附近染色体的交换经常受到抑制。而且在整倍体后代中也检测到不同于双亲的新的杂交带型。3.药用野生稻转育后代一个抗白叶枯病新基因的定位 从药用野生稻渗入后代选育的水稻株系BS,表现为高抗褐飞虱、白背飞虱和白叶枯病。对BS与釉稻品种明恢63杂交组合的187个重组自交系(R几s)进行了抗白叶枯病接种鉴定,采用分离集团分析法,在第1染色体上筛选到与水稻抗白叶枯病基因相连锁RFLP分子标记。利用RILs抗病性表现型鉴定资料和构建的分子标记连锁图谱,将抗白叶枯病基因定位在第l染色体短臂的C904和R596之间,这2个分子标记之间的遗传距离为1.3一cM。该基因对R几s群体抗病性变异的贡献率为52.%%,是一效应值较大的主效基因。这一抗白叶枯病基因不同于已报道的抗白叶枯病基因的位点,因此,我们将其命名为xa29(t)。野生稻来源的抗白叶枯病新位点的发现和分子标记定位,为水稻分子标记辅助育种和抗白叶枯病?