论文部分内容阅读
生物电阻抗成像技术(Biological electrical impedance tomography,BEIT)是一种新型无损功能成像技术。其基本原理是根据人体内不同组织器官在不同生理或病理状态下具有不同的阻抗特性。通过配置体表电极阵列施加一定频率的低幅交变安全电流,并通过扫描电极测量电压数据,重构被测组织或器官的断层分布图像,从而提取与人体生理、病理状态相关组织或器官的电特性信息。BEIT具有安全无辐射、非侵入、低成本、便携、可视化等优点,可实现长期、动态、连续图像监测。本课题基于人体呼吸过程的BEIT图像监护技术进行系统研究:1、对图像重建算法展开研究。基于广义Tikhonov正则化算法,针对图像重建算法的分辨率、鲁棒性、实时性等指标,分别提出最大熵正则化算法有效提高了EIT成像精度,消除图像伪影;引入先验信息构建正则化矩阵,改进人体肺部呼吸EIT成像效果;组合算法克服了单一迭代中收敛慢及半收敛现象,增强了算法的鲁棒性;基于预处理技术的组合算法则在保证成像分辨率和稳定性的前提下,进一步提高算法的实时性。2、研究三维EIT电极结构与激励模式,获取三维场空间分布信息。为获取更好的三维图像重构结果,必需构建多层传感器阵列系统,以增加独立测量数据量。文中介绍两种三维电极分布模型,并对四种不同激励模式进行研究。此外,针对三维EIT成像提出了一种新的图像重建算法,在保证算法稳定性前提下,有效提高了重建分辨率和实时性。3、基于MEIT-TJU数字EIT系统对人体肺部呼吸过程进行实时监测,并分别对测量数据以及重建图像序列进行分析研究,挖掘有效信息。4、对三维人体模型进行仿真研究。根据人体胸部CT扫描图,分别构建2.5D和3D不同程度肺萎陷模型,分析比较电导率特性与复电导率特性对于不同模型EIT图像重构的影响。基于EIT引入几种肺通气量指标分析评价各种状态下肺部通气量变化,对比不同电特性对通气指标参数计算的影响。