论文部分内容阅读
本论文依托国家高技术研究发展计划(863计划)课题研究任务“农机精准作业协同系统研发及应用示范(编号:2013AA10230803)”和国家测绘地理信息局项目“基于网格化的村镇土地管理与服务平台研究及应用”,以山东省济宁市兖州区和山东省淄博市临淄区文冠果试验基地作为研究区,基于宏观(行政区域)、中观(农作区)、微观(单株作物)三种不同的视角,对精准农业中农田网格划分及其应用展开了研究。本论文的主要研究内容和结论如下:(1)研究了精准农业中农田网格划分问题,构建了不同视角下农田网格划分方法。在宏观视角下,借鉴城镇社区网格化分的经验,确定了农田网格划分原则和农田网格划分方案。在中观视角下,根据兖州区农田网格划分的现状,研究了最优农田网格大小,最终决策出400亩农田网格大小是兖州区目前最适宜的网格大小。在微观视角下,通过试验,确定了文冠果管理的适宜网格大小为3 m?4 m。(2)宏观视角下,从社会管理和服务的角度研究了精准农业中农田的管理问题,构建了基于网格化的农田管理模型,验证了管理模型的合理性并定量比较了网格化和非网格化农田管理模型。借鉴城镇社区网格化管理的经验,依托兖州区已有的村镇社区网格化管理现状,对现有的农田管理流程进行了再造和优化,构建了一种具有普适性的“七步闭环业务协同法”的农田管理模型。为避免模型中存在的结构错误,为管理模型的后期顺利实施提供理论保障,构建了一种将Petri网化简技术和逻辑表相结合的结构合理性验证方法。基于PIPE进行仿真试验,验证了农田网格化管理模型的合理性以及所提出的验证方法的有效性。使用Arena仿真工具和基于随机Petri网构建的定量测度模型分别对网格化和非网格化农田管理模型进行了定量客观的比较,表明了网格化农田管理模型具有显著的优势,为后期农田网格化管理模型是否能够实施和推广进一步提供了科学的决策依据。(3)中观视角下,基于网格化确定了合理土壤采样点并验证了合理性,得到了优化的多年土壤采样点数据。在兖州区的四个镇得到86个采样点,样点间距大约为1.5km。其中,小孟镇和漕河镇各20个采样点,大安镇和新兖镇各28个和18个采样点;潮褐土、砂姜黑土、潮土区域各68个、12个和6个采样点。从不同角度不同侧重点全面验证了所确定的土壤采样点的合理性。基本描述性统计结果表明:虽然减少了采样点,但各土壤养分的均值、中值、变异系数和变异程度同原始采样数据的统计结果非常接近,标准差也相差不大;根据经典Cochran公式,计算出86个采样点完全可以达到测土施肥的要求;地统计分析结果表明:各土壤养分的变程均大于采样间距;选择普通克里格插值方法进行空间估值,通过交叉验证进行插值精度评价,结果表明:平均误差(ME)和平均标准误差(MSE)值均接近于0,均方根标准误差(RMSSE)均接近于1,均方根误差(RMSE)与平均标准误差(ASE)的值非常接近。在验证采样方案合理的基础上,对已有的土壤采样进行了优化,得到了采样点数量和布设基本一致的多年的土壤采样点数据。(4)基于验证合理的网格土壤采样点数据,构建了土壤肥力变化趋势预测模型。基于2012-2017年已验证合理的网格土壤采样数据,从社会经济角度分析影响土壤肥力变化的主要因素。基于随机Petri网建立了土壤肥力变化趋势预测模型,计算出研究区在未来一年土壤肥力下降的概率大约是0.7852。通过比较2016年和2017年土壤肥力,以及进一步分析2012-2016年土壤肥力变化情况,分析结果验证了所提出的预测土壤肥力变化趋势的方法是有效的。(5)基于验证合理的网格土壤采样点数据,研究了土壤养分空间变异,研制了研究区土壤养分和肥力时空变异查询“一张图”系统。首先,基于2012-2017年已验证合理的网格土壤采样数据,对土壤养分进行了描述性统计分析,结果表明:有效磷含量一直比较丰富,处于二级水平。有机质、碱解氮、速效钾三种土壤养分在这6年期间具有一定下降的趋势。土壤pH为弱变异,有效磷、有机质、速效钾、碱解氮均为中等变异。然后,与划分的农田网格相结合,基于2017年网格土壤采样数据,对研究区土壤养分空间变异进行了研究,结果表明:有机质含量的空间分布呈条状由西到东逐渐降低,所有农田网格的有机质含量都处于中等偏下的四级水平。碱解氮含量北部和南部区域较高,中部偏北区域较低,绝大多数农田网格的碱解氮含量处于中等的三级水平。有效磷含量由北向南逐渐降低,绝大多数农田网格的有效磷含量处于中等偏上的二级水平。速效钾含量由西南向东北方向逐渐降低,绝大多数农田网格的速效钾含量处于中等的三级水平。四个镇中,小孟镇四种土壤养分含量均较高。在以上研究基础上,研制了研究区土壤养分和肥力时空变异查询“一张图”系统,可以提供研究区整体和单网格土壤养分与肥力情况查询,为精准施肥提供了决策支持。(6)微观视角下,研究了基于网格识别的田间文冠果精准采摘问题,研发了文冠果图像采集系统,构建了成熟文冠果识别模型。文冠果图像采集系统实现了田间行走、数据的采集、传输和存储、网格识别等功能。系统测试结果表明:根据GPS坐标可以自动得到相应的网格位置和网格编号。为了快速识别成熟文冠果,构建了一种深度学习网络模型。试验结果表明:在原始数据集中,训练出来的最优模型对成熟和未成熟文冠果的正确识别率分别达到81%和82%。借助识别的准确率、精确率、召回率、F1_Score四种指标进行评估,结果表明:训练出来的最优模型无论在原始数据集上还是在模拟数据集上,各项指标值最低也能达到80%。说明构建的成熟文冠果识别模型可以作为文冠果是否成熟的识别工具。通过与未使用模拟数据的模型对比试验,结果表明:通过数据模拟技术,可以扩充训练数据集,从而能够提高模型的泛化能力和预测的准确性,能够较好地解决“过拟合”问题。