论文部分内容阅读
近年来,随着MIMO技术的迅速发展,MIMO雷达与MIMO通信均取得了许多重大的突破。但是在频谱资源日益紧张的情况下,雷达与通信系统之间的相互干扰也日趋严重。无论是民用还是军用的雷达和通信设备,其装备在单一平台上均面临着空间竞争和电磁兼容等问题,而实现雷达和通信的一体化,使雷达与通信共享发射波形,是解决该问题的有效途径。本文围绕基于MIMO雷达的雷达通信一体化共享波形设计和通信信息插入方法等关键问题和技术难点展开研究,针对基于MIMO雷达的雷达通信一体化系统发射接收方法、MIMO-OFDM共享波形设计和距离-速度估计、结合星座点映射插入通信信息符号的MIMO共享波形设计、基于MIMO发射波束形成的共享波形设计和利用空时相位编码的通信信息插入方法以及相干MIMO雷达的空时相位编码波形设计等问题,提出了相应的波形设计方法和通信信息插入方法,具体内容如下:1.对机载MIMO雷达平台上实现雷达通信一体化的场景进行了描述和讨论,并建立了雷达通信一体化系统的发射-接收信号模型。针对MIMO雷达体制的发射波形特点,研究分析了MIMO雷达发射波束形成与相控阵雷达的不同。对于MIMO雷达发射波束的两种不同情形,即全向发射波束和指向性发射波束,研究分析了在共享波形中插入通信信息所存在的关键问题,讨论了两种情况下发射波形设计的不同之处。最后,介绍了传统的MIMO雷达和通信信号处理方法,分析二者的特点。2.在现有的MIMO-OFDM正交波形设计中,均匀交错OFDM波形的子载波频率间隔增大,导致雷达最大不模糊距离下降。此外,OFDM波形存在时域包络起伏的固有缺点,会降低雷达发射机的功放效率,影响雷达的作用距离。为了解决上述问题,提出了一种基于改进TR(预留子载波)技术的MIMO-OFDM多天线联合优化波形设计方法。该方法在设计正交交错OFDM波形时,采用分组优化方法对OFDM子载波结构进行非均匀交错,同时约束相邻两个子载波的最小频率间隔,在保证雷达最大不模糊距离不下降的条件下,获得PAPR较低的子载波交错方式。之后,把信噪比较低或者无用的子载波用作预留子载波,结合改进的TR技术进行MIMO-OFDM多天线联合优化进一步降低PAPR。在接收端,给出了一种基于补偿相位差的MIMO-OFDM距离-速度估计算法。最后,通过仿真实验验证了所提方法的有效性。3.针对MIMO雷达通信一体化共享波形设计中,MIMO雷达发射波束形成与通信信息调制插入相互独立,以及在不改变雷达PRF的情况下提高信息传输速率的问题,提出了一种结合星座点映射插入信息符号的MIMO发射波形设计方法。该方法通过在各个发射天线上发射一组正交波形的加权和信号,在雷达发射波束形成中对每个正交波形进行通信方向的星座点映射来插入信息符号,并采用最小化ISL准则优化发射波束。之后,推导了该模型下发射波形的PAPR上界,并改进正交波形设计来降低PAPR上界。该方法结合星座点映射与发射波束形成,在空域插入信息符号同时优化设计雷达发射波束,可以避免通信信息随机性对雷达主瓣的影响,并获得更低的波束旁瓣电平,且提高了信息传输速率,具有更好的误码率特性和低截获概率,通信性能对角度误差有更好的容忍性。4.针对现有的MIMO雷达通信一体化发射波束形成中,通信方向的等效信号在子脉冲间存在包络起伏,以及信息传输速率严重依赖于雷达PRF的问题,提出了一种基于MIMO雷达发射波束形成,在子脉冲间插入通信信息的空时相位编码波形设计方法。该方法通过矢量化表示建立了能够约束通信等效信号在子脉冲间恒模和发射波形恒模的发射波束优化模型。基于赋形逼近优化和累积功率逼近优化两种发射波束设计准则,分别采用ADMM算法和SDR方法来求解优化问题。在通信等效信号恒模的基础上,提出了在每个子脉冲上插入通信信息的空时相位编码方案,并给出了DCM和PRCM两种信息符号映射方法。DCM信息插入方法具有更好的误码率特性和低截获概率,而PRCM信息插入方法在抗通信信道估计相位误差方面有着更好的鲁棒性。5.针对传统的MIMO雷达发射波束形成方法只优化积分功率,而不约束单个子脉冲的功率,导致目标等效信号存在包络起伏的问题,提出了一种基于空时相位编码的MIMO波形设计方法。该方法首先在第一个发射子脉冲上,通过采用相位编码波形优化设计存在干扰下的雷达发射波束形成。之后,根据第一个子脉冲上所得相位,采用特殊的空时相位编码方案设计空时波形,使得在每个子脉冲上均可获得相同的干扰零陷深度,接着采用改进的模拟退火算法求解抑制目标等效信号包络起伏的空时相位优化问题。该方法所设计MIMO波形具有良好的抗干扰能力和LPI,并能够降低目标等效信号的归一化匹配滤波损失。