论文部分内容阅读
利用田间试验数据、地面调查数据,从干旱区典型陆地生态系统入手,研究了干旱区典型陆地生态系统CO2源汇关系;研究了土壤呼吸及其影响因素,土壤CO2固定与释放特征;利用遥感技术手段和GIS技术,对区域尺度NPP进行了估算,实现了区域NPP的遥感动态监测,对NPP的时空分布规律进行了详细的描述和客观地评价,为陆地不同生态系统土壤碳循环规律及对策研究提供了依据。主要结论如下:绿洲农田生态系统:各种类型的绿洲农田生态系统对的CO2固定量有一定日变化差异,在夜间的11个小时内,各农田生态系统都是碳源,即净释放CO2而白天小麦生态系统和棉花生态系统都有1个小时为碳源。研究表明玉米农田生态系统对CO2的净固定能力最强,24小时固定CO238.47g/m2。其次是小麦生态系统和棉花生态系统。从年固碳量来看,绿洲玉米生态系统为最高,达到141.66t CO2/hm2.a;其次为小麦生态系统,为122.60t CO2/hm2.a;棉花生态系统最低,为50.39t CO2/hm2.a。荒漠林地生态系统:在夜间的11个小时内,各林地生态系统都是碳源,即净释放CO2。而在白天,云杉林地生态系统有7个小时为碳源,研究表明:云杉林地生态系统对CO2的净固定能力最弱,24小时内净释放CO2 4.22g/m2。最强的是梭梭林地生态系统,24小时净固定CO218.34 g/m2。红柳林地生态系统对CO2的固定能力稍弱于梭梭林地生态系统。从各观测样地的年固碳能力来看,梭梭林地生态系统固定量最大达到了9.29t CO2/hm2.a,红柳林地生态系统次之,为2.68t CO2/hm2.a。云杉林地生态系统总体来看是一个弱的碳源,年释放量达到8.20t CO2/hm2.a,这与传统的观点相左,尚需要进一步研究。高山草地生态系统:围栏封育条件下,草地生态系统日CO2净固定量达到了12.76gCO2/m2·d,每天除18时和21时是弱的碳源外,其余时间均是碳汇。其中16时以前是碳的强汇,对CO2的净固定量达到12.02gCO2/m2,占到日总CO2净固定量的94.20%;自然放牧条件下,草地生态系统日CO2净固定量达到了11.52gCO2/m2·d,除9时、13时、14时和21时是弱的碳源外,其余时间均是碳汇。其中15~19时是碳的强汇,对CO2的净固定量达到9.46gCO2/m2,占到日CO2净固定量的82.00%。13、14时出现弱源的主要原因是由于植物的光合速率在中午有所下降即“午休”现象导致的。每年的5~9月份是牧草的生长期,对巴音布鲁克亚高山草地生态系统CO2的年固定量的初步估算结果表明:其CO2固定量达到7.14t CO2/hm2·a。三工河流域土壤碳估算:新疆三工河流域总碳储量约为11.18Pg,其中有机碳约为5.43Pg,占48.54%,无机碳约为5.75Pg,占51.46%。各土壤生态系统相比较,森林土壤、草甸土壤具有较大的有机碳通量和有机碳容量,但其无机碳通量和无机碳容量均明显低于其它土壤生态系统;荒漠土壤生态系统的有机碳通量、碳容量最低,但其具有较高的无机碳储量。亚高山草地生态系统碳估算:巴音布鲁克亚高山草地生态系统地上植物体碳总量约为7.20万t。其中地上部分约为3.20万t,约占44.44%;地下部分根系约为4.0万t,约占到55.56%。对巴音布鲁克亚高山草原生态系统的土壤有机碳进行了估算,结果表明:亚高山草原生态系统土壤有机碳的平均碳通量为16.80Ckg/m2,土壤有机碳总贮藏量约为3019.22万t。土壤条件对凋落物分解速率的影响:壤质土上的有机物料分解速率高于粘质土和砂质土;中等土壤湿度条件下有机物料的分解速率最高;深埋方式有机物料的分解速率高于浅埋方式;中等土壤盐分条件下,有机物料的分解速率最高;不同类型凋落物,在其它条件完全相同的条件下,分解速率也不完全相同,主要是由于其木质素含量有所差异所致。本研究是在固定了其它因子的条件下,仅对单因子逐项进行了研究,因子间的交互作用尚需要进一步研究。区域NPP的遥感估算:在AVHRR NOAA光谱数据的基础上,运用NOAA AVHRR的可见光波段、近红外波段和热红外波段来提取和反演地面参数,在地理信息系统的支持下,综合地学、生态学信息,精确估算陆地NPP,最终达到区域尺度范围内NPP动态监测的目的。