论文部分内容阅读
为阐明木质素基胶黏剂在热压过程中的固化机理,以及它与木材单板之间的胶接机理,本论文以聚乙二醇为液化剂从木材中分离提取木质素,以此为胶黏剂,系统研究了木质素基胶黏剂的化学结构与粘度等特征,并直接用于制备胶合板,考察了热压工艺对胶合板力学性能、耐水性能等影响,探讨了在添加六次甲基四胺的条件下制备的胶合板的力学性能与甲醛释放量,阐明了木质素基胶黏剂在热压过程中的固化机理,最终探讨了木质素基胶黏剂与木材单板之间的胶接机理。具体结论如下: 1、以聚乙二醇为液化剂,成功从杨木木片中分离提取出木质素,用其直接制备的三层胶合板的胶合强度达到国家Ⅱ类胶合板标准; 2、木质素基胶黏剂制备得到的胶合板的胶合强度随热压压力(当改变热压压力时,热压温度和热压时间保持180℃和705s)和热压时间(当改变热压时间时,热压温度和热压压力分别是180℃和1.8 MPa)的增大先略微增大而后稍有减小。随热压温度(当改变热压温度时,热压压力和热压时间分别保持1.8MPa和705s)的增加而增加。胶合板的弹性模量和静曲强度随着热压压力和热压时间的增加均出现先增大而后略减小的趋势;随着热压压力、热压时间和热压温度的升高,胶合板的24 h吸水率与吸水厚度膨胀率均表现出下降的趋势; 3、热压过程中,木质素基胶黏剂分子结构中发生了一定程度的分解,促进木质素基胶黏剂在热压压力作用下进入木材单板表面的多孔性结构中。在先后经过热压与冷压处理,木质素基胶黏剂在温度降低后继续保持着紧密连接的固化状态,从而实现木质素与木材单板胶合的目的; 4、六次甲基四胺改性木质素基胶黏剂可以显著地提高其胶合板的胶合强度,并随六次甲基四胺质量分数(按照木质素基胶黏剂绝干比1%,2%,5%,10%,15%)的增加而增大。胶合板甲醛释放量随质量分数的增加而不断的增大,最好的可达到E0级限量要求。添加六次甲基四胺的木质素基胶黏剂胶合板的胶合强度有了显著的提高,比未改性的木质素基胶黏剂胶合板提高了91%。同时,胶合板的胶合强度随着热压压力(当改变热压压力时,热压温度和热压时间分别是190℃和705s)、热压时间(当改变热压时间时,热压温度和热压压力分别是190℃和2.0 MPa)和热压温度(当改变热压温度时,热压压力和热压时间分别是2.0MPa和705s)的增大而增大,并受热压温度影响较大。同时,随着热压压力的增加,胶合板的弹性模量保持增加的趋势,而胶合板的静曲强度变化趋势与胶合板弹性模量的变化趋势相接近; 5、在热压过程中,木质素基胶黏剂分子结构中醚键的数量不断减少,并形成新的亚甲基键,使得木质素基胶黏剂内的交联结构增多,固化程度加深,从而实现比未改性的木质素基胶黏剂的固化程度高,在宏观上表现为胶合强度的较大提高; 6、热压压力为1.4 MPa条件下的木质素基胶黏剂在胶合板胶层界面处中的胶层不连续,出现明显的断层结构;热压压力为1.8 MPa时,木质素基胶黏剂胶合板中胶层厚度有了明显的提升,并且没有出现断层现象;热压压力为2.2 MPa时,木质素基胶黏剂胶合板中胶层同样也是连续的,但胶层厚度有所减小。同时,木质素基胶黏剂在横切面和径切面的渗透性有所提高。六次甲基四胺改性后的木质素基胶黏剂在热压过程中的流动性要差于未改性的木质素基胶黏剂的。胶合板中胶层没有出现断层的现象,但胶层厚度减少,渗透性较差; 7、木粉中的羟基与木质素基胶黏剂中的羟基在热压时发生缩合反应,产生新的醚键连接,使得最终体系中化学键作用力增加。Zeta电位分析的结果显示,不论是木粉还是木质素基胶黏剂,以及改性后的木质素基胶黏剂,在热压前后,电导率都比较接近,电位均为负值,在热压前后则表现出明显的差异性,使木粉与胶黏剂之间相互排斥的静电作用力增大; 8、水热处理单板可以有效的促进木质素基胶黏剂胶合板胶合强度的提高。胶合板的胶合强度随单板水热处理温度升高先增加后减小,但添加六次甲基四胺的木质素基胶黏剂,由于交联固化,难以在木材单板中渗透,流动性能较差,最终形成的胶钉作用相对较少,进而胶合板的胶合性能变化不大。