论文部分内容阅读
最近十多年来,随着高频/超高频金融数据的广泛应用,基于高频金融数据的已实现波动率方法由于其计算非常方便,与GARCH族模型以及随机波动率模型相比,不需要进行复杂的参数估计以及在一定条件下还是真实波动率的无偏估计量等优点,在金融领域中得到了十分广泛的应用,己发展成为金融计量学的一个全新的研究领域。然而,国内对高频已实现波动率预测的研究还处于初级阶段,绝大多数的研究都是套用国外的模型,极少同时考虑我国股市波动率的各种特性,对预测模型的优劣判别方法很不严谨,大多只采用基于单一样本的单一损失函数进行判别,并且很少有文献考虑高频己实现波动率跳跃对波动率预测的影响。因此,本文的主要目的是构建我国股市高频已实现波动率参数预测模型、半参数预测模型以及考虑跳跃的高频已实现波动率预测模型来预测我国股市的高频已实现波动率,并采用更加稳健的评价方法来评价和比较波动率预测模型的预测精度。 本文首先运用上证综指高频金融数据,采用基于核的估计方法估计出我国股市高频波动率序列。在考察了我国股市高频波动率的各种特征的基础上,构建了一个同时考虑高频已实现波动率的长记忆性、结构突变、不对称性以及周内效应等特性的自适应的不对称性HAR-D-FIGARCH模型,并用于我国股市高频波动率的预测。通过MZ回归检验法、SPA检验法以及VaR预测评价检验法评价和比较了该模型与HAR模型、HAR-GARCH模型、ARFIMA模型、ARFIMAX模型以及ARFIMAX-FIGARCH模型的样本外预测精度。结果发现,在各种损失函数下,该模型是预测我国股市高频波动率精度最高的模型。 接着,通过幂转换以及不设定扰动项的具体相关结构和分布形式构建了一个高频波动率的半参数短期预测模型。该模型采用基于极值估计量的两阶段估计法进行估计,通过Monte Carlo模拟,这个估计方法的小样本性质表现良好。通过SPA检验发现,与ES模型、ARFIMA模型等6种预测模型的预测能力相比,在各种损失函数下,本文所构建的半参数短期预测模型是预测中国股市波动率准确性最高的模型。 此外,本文还运用修正的已实现门阀多次幂变差(C_TMPV)估计出我国股市高频波动率的跳跃序列,进而实证分析了跳跃的各种特征,并运用ACD模型、ACH模型以及扩展的ACH模型进一步分析了跳跃持续期的特征,并通过构建AHAR模型、AHAR-CJ模型以及AHAR-C_TCJ模型及其各自的平方根形式和对数形式的模型,探讨了高频波动率跳跃究竟是否影响我国股市已高频波动率的预测以及高频波动率跳跃能否提高高频波动率的预测精度的问题。研究结论表明,我国股市高频波动率及其跳跃都具有集聚的特征,高频波动率发生显著跳跃的比例相当高,高频波动率跳跃的幅度、强度以及跳跃幅度的分布都具有时变性,而跳跃对高频波动率的贡献却具有相对稳定性,并且高频波动率跳跃表现出较强的正相关性,且跳跃的持续期存在较强的长记忆性;基于修正的己实现门阀多次幂变差估计的高频波动率跳跃对我国股市日、周和月的高频波动率的预测确实存在显著的正向影响,加入偏差修正后的跳跃的AHAR-C_ TCJ模型相比其他模型,能显著提高日、周和月的高频波动率的预测精度。 最后,本文构建了考虑跳跃的HAR模型和MIDAS模型对我国股市高频波动率进行长期和短期预测。研究结果表明,在所有的HAR类和MIDAS类模型中,加入修正的已实现门阀多幂次变差估计的我国高频已实现波动率的跳跃成分和连续成分的HAR模型和MIDAS模型的样本内预测精度和样本外预测精度都是最高的;具有相同的回归元的HAR模型和MIDAS模型来预测我国股市高频已实现波动率的样本内预测精度在短期和中长期都相差不大,而在中长期MIDAS模型预测我国股市高频已实现波动率的样本外预测精度要高于HAR模型。 本文的研究,对于丰富波动率预测的研究方法,完善预测理论具有重大的理论意义;对于机构和个人投资者优化资产组合的配置,合理进行金融衍生品的定价,测量、预测和防范资产收益变动的风险,以及提高金融监管部门对股票市场的风险监管水平都具有重大的现实意义。