论文部分内容阅读
巷道的开挖与支护是一个非线性过程,不同的开挖强度、开挖速度、开挖方式、开挖工艺、支护时机、支护参数,导致了不同的围岩变化规律和不同的围岩损伤程度。围岩的损伤变形与时间密切相关,由于围岩的时效机理复杂,造成合理的支护形式和支护时机确定困难。针对围岩的时效支护问题,本文构建了时效围岩的理论模型,推导了围岩的扰动边界与时间的关系函数,确定了时效围岩应力和位移的解析计算方程,探究了预应力锚杆的时效支护机理,给出了预应力锚杆与围岩相互作用的应力、变形计算方法;研究了锚杆的支护长度和预应力的最优匹配值,揭示了锚杆托盘的应力扩散机制;提出了超级预应力锚杆支护的理念,探讨了超级支护与时效支护的关系;编制了时效围岩的计算软件,给出了时效计算软件的工程算例。主要取得以下进展:(1)揭示了围岩扰动范围随应力传递时间变化的规律。巷道围岩的扰动范围与时间的二次方根成正比;随着时间的推移,围岩扰动范围的变化分为两个阶段:首先是急速变大,然后是缓慢衰减;在急速变大阶段的扰动范围一般为巷道半径的3~5倍;岩性极差的围岩容易在急速变大阶段发生失稳,缺失缓慢衰减阶段。(2)研究了围岩时效变化的对称性原理。时效围岩持续变化和发展的根本原因是对称性或缺,围岩的对称性或缺主要包括围岩深部和浅部的应力不对称和变形不对称两方面;减弱时效围岩的应力不对称和变形不对称有助于长时稳定支护,大幅提高支护预应力可以有效减弱围岩的应力和变形不对称。(3)探索了预应力锚杆支护的时效性。预应力锚杆在支护过程中,随着围岩的时效变形,锚杆轴力发生了变化;当锚杆轴力超过了临界拉拔力时,锚固界面发生渐进脱粘,使得锚杆自由段和锚固段长度发生了变化,影响了锚杆的临界预应力和锚固盲区的范围;同时,锚杆轴力的时效变化改变了托盘的弹性变形、蠕变变形和受力状态,影响了托盘的应力扩散规律;这些都表现出了锚杆支护的时效性。(4)揭示了锚杆自由段长度和临界预应力之间的关系。预应力锚杆支护存在两个有效压应力区,锚固段有效压应力区和自由段有效压应力区;随着预应力的不断增大,两个压应力区逐渐靠近,最终融合;当两个压应力区即将融合时,锚杆的预应力为临界预应力;不同长度的锚杆具有不同的临界预应力,锚杆自由段的长度越长,临界预应力越大。(5)探究了锚杆长度、预应力对锚固盲区的影响。预应力的大小不能改变锚固盲区的范围,只能缓解盲区的受力环境;锚固盲区的范围与锚杆的长度有关,锚杆自由段长度越长锚固盲区范围越大;锚固盲区的岩体主要靠岩体自身的强度自稳和护表网片等维护;锚固盲区不能自稳时,缩小锚杆间排距是最有效的方法之一。(6)分析了锚杆托盘的应力扩散机制。锚杆轴力不能完全反映锚杆支护的真实工况,还需要结合托盘的受力和变形;托盘应力呈中间大?边缘小的分布规律;托盘的尺寸越大?厚度越厚,围岩变形过程中,锚杆支护增阻越快,控制围岩变形越有效;大托盘受力面积大、支护范围广,有利于提高围岩的护表能力,缺点是大托盘的边缘力矩较大,不利于托盘的受力优化,容易变形。(7)提出了超级支护的理念。施加预应力超过锚杆最优预应力的支护方式称为超级支护,锚杆最优预应力取锚杆临界预应力的40%。试验表明,超级锚杆支护可以显著改善围岩的应力环境,可以延缓和抑制围岩的变形速度、缩小围岩的损伤范围,可以改善特定环境下特定位置的疑难支护问题;能够扩大锚杆支护的间排距,而不降低支护的整体强度,这有助于巷道快速掘进。(8)设计了实现超级预应力的组锚杆结构。组锚杆结构是将多个杆体安装在一个托盘上,并将锚杆均匀布置在了托盘的边缘附近;组锚杆的优势在于可以集中支护?节约支护空间,可以匹配空间资源稀缺的智能掘进;组锚杆结构有利于快速实现超级预应力支护,有利于弱化托盘的边缘力矩,有利于托盘预应力的长期维持。(9)编制了模拟预应力锚杆时效支护的计算软件。该软件不仅可以模拟时间作用下巷道围岩的变化规律,还可以综合模拟开挖?支护?回采及下一个工作面接续全过程,实现了超大尺寸模型的精细化求解;计算模型的尺寸可以依据研究对象尺度灵活放缩。该论文有图87幅,表5个,参考文献217篇。