Rogers-Ramanujan型恒等式与q-算子

来源 :华东师范大学 | 被引量 : 0次 | 上传用户:Cyril
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在q-级数两百多年的发展史中,Rogers-Ramanujan型恒等式始终是q-级数的重要研究课题,在q-级数的发展中占有核心地位.著名的Rogers-Ramanujan恒等式由英国数学家Rogers和印度数学家Ramanujan各自独立发现.在本文中,我们利用两个著名的Rogers-Ramanujan恒等式,并结合q-超球多项式得到了若干Rogers-Ramanujan型恒等式,再利用Sears-变换推导出若干Rogers-Ramanujan型恒等式. 然后利用关于q-微分算子的Leibniz公式给出了一些重要变换公式新的证明,包括q-Z项式定理,q-Chu-Vandermonde和.
其他文献
最优化问题从产生到现在,众多的学者和数学家已经提出和总结了许多的最优化方法。但应该指出,目前大多数的算法求得的都是局部极小点,仅当问题具有某种凸性时,局部极小点才是全局
本文一共包含五章内容第一章,简单介绍了研究背景及主要研究内容;第二章提出了一种带参数的三次三角曲线,具有类似Bézier曲线的性质,插值于起点和末点,λ越大越接近控制多边
在经济学中,几何布朗运动可以表示项目价值、产出价格、投入成本以及随时间推移随机地主动影响投资决策变量的动态变化过程。由于布朗运动不能预测负的股票价格,因此很难将之作
在初中英语的学习过程中运用语境教学,是提高初中英语教学成绩的有效手段,能够改变初中学生对于英语教学兴趣低下、主观能动性不强的问题。是教育改革在英语教学中的新探索,
本文考虑的是一维带阻尼的半线性波动方程utt+αut-uxx+g(u)=f,(x,t)∈Ω×R+,带有齐次Dirichlet边界条件u(-1)=u(1)=0,和初始条件u(x,0)=u0(x),ut(x,0)=u1(x). 这里常数Ω=(-1,1),
本文主要研究自共轭微分算子边界条件的分类及其标准型。边界条件,作为微分算子定义的组成部分,对于微分算子的研究具有重要的意义。我们知道对于实参数解给出的自共轭公式,
对于恢复稀疏信号的一个有效的计算称为压缩传感问题(CS)。本文通过求解压缩传感的0l范数问题来达到精确重构原始信号的目的。将压缩传感的0l范数问题进行凸松弛,更准确地来
面对市场经济发展的新形势,企业党建工作也产生了一些新问题。如:对新形势下党建工作重要性认识不足;企业体制改革全面推进,而企业党建工作不到位;企业在推进改革和拓展经营
1985年V.Miller和N.Koblitz分别独立地提出了椭圆曲线密码体制(ECC),经过二十多年的研究,ECC已广泛应用于许多商业领域。1989年Koblitz把椭圆曲线推广到更高亏格的超椭圆曲线。
经过过去几十年的研究,聚合函数已经在许多实际问题中获得了广泛的应用,无论是在应用数学还是计算科学,或者是社会学研究方面,聚合函数都是十分重要的分析和计算工具。本文中研究