论文部分内容阅读
镍氢电池具有无污染,功率大,稳定性好,能量密度高等优点,已成功应用于新能源领域。储氢合金作为镍氢电池的负极材料,对提升我国在新能源领域的竞争力尤为重要。目前,人们所关注的储氢合金中,新型La-Mg-Ni系储氢合金综合性能优秀,应用前景广阔,但是合金循环稳定性仍无法满足实际应用。研究表明,改变A、B侧化学计量比,可以改善合金综合性能,但目前针对化学计量比的研究多集中在(B/A=33.5),对计量比为(B/A=3.64.0)的研究较少。鉴于上述问题,本文研究不同化学计量比以及后续元素替换对La-Mg-Ni系储氢合金性能的影响。研究了铸态La0.75Mg0.25(Ni0.83Co0.17)x(x=3.6,3.7,3.8,3.9,4.0)合金,发现合金均由多相构成,包括LaNi5,A5B19和CeNi2相。随着化学计量比增大,A5B19相丰度先上升后降低,在x=3.9时最高,达到64.51wt%,合金电极最大放电容量Cmax与A5B19相丰度变化一致。合金电极循环稳定性随化学计量比增大,逐渐降低,100次循环容量保持率S100从68.92%(x=3.6)降低到65.43%(x=4.0)。实验表明,合金电极高倍率放电性能由电极表面交换电流密度控制,适当增大计量比可提升高倍率放电性能。在所研究的合金中,x=3.9时综合性能最佳,此时Cmax为372.2 mAh/g,S100为65.54%,在900mA/g下的高倍率放电性能HRD900为83.33%。对铸态La0.75Mg0.25(Ni0.83Co0.17)x(x=3.6,3.7,3.8,3.9,4.0)合金进行退火处理(1123K,6h),退火后合金电极最大放电容量相比铸态有了明显提升,Cmax同样在x=3.9时取最大值,为386.6mAh/g。合金电极循环稳定性在x=3.7时最高,S100达到82.76%。实验表明,退火态合金电极高倍率放电性能主要受氢原子在合金电极内部的扩散速率控制。在退火态合金中,x=3.8时综合性能最佳,此时合金Cmax为383.1mAh/g,S100为75.98%,HRD900为92.8%。研究了铸态及退火态La0.75Mg0.25(Ni,Co)3.9(Ni/Co=1,2,5,9,19)合金,发现合金电极最大放电容量随着Ni/Co比值增大先升后降,两种状态合金Cmax均在Ni/Co=5时取得最大值。适当降低Ni/Co比值,可以提升合金电极循环稳定性但不利于合金电极活化,如Ni/Co=1时,退火态合金电极S100达到87.76%,但活化需要5次充放电循环。两种状态合金电极高倍率放电性能均由交换电流密度控制,随Ni/Co值上升呈先上升后降低的趋势。实验表明,Ni/Co=59时合金电极综合性能较优,如退火态合金在Ni/Co=9时,Cmax为363.9mAh/g,S100为74.58%,HRD900为90.46%研究了铸态及退火态La0.75-xCexMg0.25Ni3.25Co0.65(x=0,0.05,0.10,0.15,0.20)合金,发现添加Ce元素可促进合金中LaNi5相的生成,同时合金晶胞体积及各项参数出现明显降低。最大放电容量随Ce替换量增加,逐渐降低,铸态及退火态合金Cmax均在x=0时取最大值。实验表明,添加Ce元素可以显著提升合金电极的循环稳定性,如:铸态合金S100随Ce含量上升从65.54%(x=0)逐渐增大到81.19%(x=0.2)。合金电极高倍率放电性能随着Ce替换量上升先升后降,铸态及退火态合金均在x=0.05时HRD900达到最高,分别为90.07%,90.16%。