论文部分内容阅读
不同于传统控制理论,系统性能极限理论研究的核心问题是:根据系统的内部结构特性判断其闭环控制系统能否获得完美的控制性能,并且计算其最优可达控制性能.显然,系统的性能极限仅依赖于其自身的内在品质,而与控制器的设计无关.因此可以在一定程度上反映系统的“控制困难度”,对控制系统设计具有极为重要的指导意义.目前己知非最小相位特性是系统性能极限的主要决定因素,例如:线性系统中的右半平面零点和非线性系统中的不稳定零动态都会严重影响闭环系统的控制性能.并且非最小相位问题普遍存在于航空航天等重要工业领域,例如:飞行器的纵向运动就具有典型的非最小相位特性.因此,揭示非最小相位特性对系统性能极限的作用机理也具有十分重要的研究价值和非常广阔的应用前景.另外,由于非最小相位问题在航空航天领域中的普遍性及其对飞行控制系统性能的负面影响,因此需要设计更为先进的飞行控制方法,以满足对现代飞行器控制品质的要求.
本课题在国家自然科学基金青年科学基金项目“一类非线性非最小相位系统的性能极限及其应用研究”(60904006)的资助下开展研究,其主要成果包括:
1.基于线性系统H2型性能极限的相关理论,提出了一种二自由度的线性纵向飞行控制器设计方案,进而给出了单输入单输出和双输入双输出两种飞行器纵向运动小扰动线性化模型的H2型性能极限,并通过仿真验证了其正确性.另外,分析了飞行器气动舵面关键系数摄动对其纵向运动线性模型H2型性能极限的影响及其大包线纵向运动的线性模型H2型性能极限.
2.基于扩展动态分析方法,给出了一类更普遍非线性系统(其结构可以描述为:由系统相对阶以外全部状态所构成的动态子系统的输入是该系统所有状态的某种线性组合)的H2型性能极限.另外,计算出短周期纵向飞行运动的一个不稳定零动态,并在此基础上设计了一种基于H2型性能极限的非线性纵向飞行姿态控制方案,进而对飞行器短周期纵向运动的非线性模型H2型性能极限进行了研究,最后通过仿真验证了其正确性.
3.针对一类同时具有匹配不确定性和非匹配不确定性的线性系统,提出了一种基于高斯径向基函数神经网络的L1自适应控制方法.另外,为了解决基于非线性动态逆控制方法的纵向飞行控制系统所遇到的非最小相位问题,在其“三环”结构框架下提出了一种基于L1神经网络自适应控制方法的纵向飞行控制系统设计方案.并通过对比仿真验证了该纵向飞行控制系统的控制效果.