不确定时态数据Top-k查询

来源 :南京航空航天大学 | 被引量 : 0次 | 上传用户:HOHO333
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
时态数据用于表示数据的时间属性,在医疗、交通、经济和电子商务等领域有着广泛的应用。由于时间测量不精确、设备误差等因素,时态数据往往具有不确定性。本文针对不确定时态数据Top-k查询进行研究,该查询根据用户设定的评分函数返回具有最高(或最低)分数的k个查询结果,这对于在海量数据中返回最符合查询条件的目标数据有重要意义。已有的研究工作主要在确定时态数据查询和不确时态数据表示,针对不确定时态数据的Top-k 查询较少。该查询需要考虑不确定性和权值两方面因素,对时态数据索引和查询处理提出了新的要求,现有时态数据索引很少涉及权值管理。本文主要工作具体如下:
  (1) 定义带权值不确定时态数据和不确定时态数据Top-k区间查询,设计并实现一种计算不确定数据相交概率的方法,给出Top-k查询的评分函数。提出一种不确定性时态数据索引结构RR-tree,该结构包含一棵2D R-tree和一个辅助结构。在此基础上设计并实现了相应的查询算法,实现按权值降序访问索引节点,采用真实和合成数据进行实验测试。实验结果验证所提方法可行有效。
  (2) 定义不确定时态数据连续Top-k区间查询并设计相应的查询算法。由于时间区间存在有效期,传统的Top-k查询只考虑在查询范围内评分最高的对象,并不考虑返回的对象是否在整个查询区间内都有效。针对不确定时态数据连续Top-k区间查询,提出一种区间划分构建的双索引DR-tree,基于该索引可以实现查询时减少访问索引中非叶子节点信息来提高查询效率。同时为管理查询区间每个点上的k个结果,提出了一个树状结构,给出连续Top-k查询算法,采用真实和合成数据进行实验。通过对比实验,表明本文所提方法在不确定时态数据连续Top-k区间查询上有较好的查询性能。
  (3) 高效更新时态数据索引。时态数据库系统不仅要管理历史数据,还要支持处理更新数据。首先基于已有的批量加载更新算法,结合区间划分更新本文提出的DR-Tree。将新加入的时态数据分为两部分,分别批量加载构建DR-Tree子树,再将DR-Tree子树分别插入对应的历史DR-Tree中。然后,将基于DR-tree提出的批量加载更新方法扩展至区间树,实现区间树批量更新。采用真实数据集和合成数据集,与删除重建索引和逐个插入更新索引算法进行对比,实验结果表明本文所提批量更新时态数据索引对于两种结构都有较好的性能,当数据规模较大时,所提方法在更新效率上优于对比方法2倍以上。
其他文献
快速有效地识别视频中的人体动作,具有广泛的应用前景及潜在的经济价值。但目前视频动作识别方法易受到运动人体晃动、背景变化、摄相机抖动、运动人体阴影等背景因素影响。如何在复杂场景下准确地进行动作识别成为了计算机视觉中的热点问题。本文使用深度学习方法,经过对已有视频动作识别算法的充分调研后展开研究,具体工作和创新点如下:1)针对目前的双流卷积神经网络无法将空间线索和时间线索有效地关联起来的缺陷,本文从特
近年来,随着高通量测序技术的不断发展,RNA-Seq即转录组测序技术已成为转录组研究的重要工具,被广泛应用于生物学、医学和药学等领域。异构体的表达水平估计和差异表达比例分析是转录组学研究的主要内容,对疾病的诊断和治疗有重要意义。异构体表达水平估计中先对定位到异构体上的读段进行计数,再进行归一化计算,最后获得异构体表达水平,保证了不同异构体的表达水平在不同条件下的可比性。异构体差异表达比例分析中通过
学位
目前,图像描述算法已是人工智能领域的研究热点之一,在跨模态检索以及视觉语义理解方面也有着广阔的应用。当前已有的图像描述算法主要是基于编码器-解码器架构的,一般采用卷积神经网络作为图像编码器,循环神经网络作为解码器。最近,一种基于卷积神经网络的解码器被提出来,用以解决循环神经网络不可并行计算的问题。然而,当前基于的卷积神经网络解码器算法不能直接建模输入单词间的相关性以及特征通道之间的相关性。同时,这
学位
大数据时代信息种类和数量变得繁复而冗杂,传统协同过滤算法在应对这种“信息过载”问题力不从心。因此,大量的专家和学者提出了多种推荐算法来改善推荐效果,满足用户需求。其中建立信任网络,使用用户间信任度对用户进行推荐便是其中一种典型算法。本文工作针对信任网络,使用社会网络中用户的关联关系得出用户之间的信任度,基于用户间信任度聚类对目标用户做出合理的推荐。论文的主要工作和创新如下:(1)基于双重邻居选取策
学位
随着多种定位设备的普及,基于位置的服务(ocation ased Services,S)已经广泛存在。尽管有了一些关于频繁模式挖掘的理论,但是还没有研究室内环境的。因此,针对室内移动对象轨迹频繁模式挖掘的研究工作显得尤为重要和迫切,以更好地为用户提供更加优质的位置服务。本文借鉴参考现有的经验,同时考虑到室内空间与室外空间的差异性,针对室内环境下的移动对象,对其做如下研究:(1)为改善传统的频繁模式
学位
模幂算法作为公开密钥算法的核心操作,是侧信道攻击的主要目标。自第一次计时攻击公开后,攻击者利用侧信道攻击实现了对公钥密码体制中的模幂算法中秘密信息的恢复。因为密码设备释放的“泄露”物理信息与模幂算法有很大的关联,从而未受保护的模幂算法为侧信道攻击提供了各种可能性。随着侧信道攻击技术的20多年的发展,针对模幂算法抗侧信道攻击的安全性的研究更是一个非常重要的研究课题。迄今为止,对模幂算法的侧信道攻击方
学位
利用计算机技术代替人工挖掘出图像和视频中有价值的信息是计算机视觉一直追求的目标。分割任务包括图像分割和前景检测又称为前景分割是计算机视觉中的基本的任务之一。前者往往是针对静态图像的处理而后者是视频信号尤其是监控视频。本文首先从静态图像中的目标分割任务入手,设计了太赫兹图像中的目标分割算法,并在此基础上引申到基于视频的分割,提出了跨场景的前景分割方法,取得了如下成果:1.基于生成对抗网络的太赫兹图像
随着无线应用的快速发展,频谱成为一种稀缺资源。认知无线电技术被视为当前频谱资源利用率低的有效解决方案之一,它允许次用户以机会接入的方式使用空闲的频谱。在认知无线电网络中,为了保护主用户的正常传输,次用户必须在接入信道之前通过频谱感知检测信道是否空闲。为了提高频谱感知的准确性,合作频谱感知被提出,它允许多个次用户合作感知频谱。对于集中式的合作频谱感知,存在一个融合中心,通过“逻辑或”、“逻辑与”等融
随着移动设备的增加,无线通信承载的数据流量爆炸式增长和无线资源紧缺的矛盾日益突出。无线虚拟化技术作为5G网络中关键的技术之一,近年来得到了广泛关注。无线虚拟化的核心是通过隔离和切片技术共享物理基础设施和资源,从而降低网络成本,提高资源利用率。无线虚拟化有巨大的潜在前景,但它也面临着一些严峻的挑战。最重要的挑战就是资源分配,现有的基于拍卖的资源分配方案大都是解决社会福利最大化问题,即最大化赢家用户估
学位
呼吸监测已被广泛用于评估一般人的健康状况,提供慢性疾病线索,并跟踪患者康复的进展情况。连续且准确的呼吸量测量可以为疾病的进展提供快速有效的诊断线索,例如阻塞性气道疾病哮喘、慢性阻塞性肺病(Chronic Obstructive Pulmonary Disease,COPD)以及睡眠期间常见的阻塞性睡眠呼吸暂停(Obstructive Sleep Apnea,OSA)等。传统的呼吸量监测方法需要用户
学位