矩阵方程AXA<'*>=B的反射实部半正定解与同余类解

来源 :上海大学 | 被引量 : 0次 | 上传用户:xiezuoyaoxiezuoyao
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
四元数和四元数矩阵在量子力学、计算机图形等众多领域有着非常重要的应用,而四元数矩阵方程是建立上述应用问题的模型基础,因此研究四元数矩阵方程有十分重要的意义.本文定义了反射实部半正定四元数矩阵并给出其判定法则,建立了四元数矩阵方程A1X1A1*+A2X2A2*=B有实部半正定解的充要条件及其解的表达式.在此基础上给出了四元数矩阵方程AXA*=B有反射实部半正定解的充要条件及其解的表达式.最后,我们研究了四元数矩阵方程似AXA*=B的同余类解,给出了其有同余类解的充要条件及其解的表达式.作为应用,给出了矩阵方程AXA*=B有自(反)共轭解、实部半正定解的充要条件及其解的表达式.这些结果进一步丰富和发展了四元数矩阵代数. 全文共分为四章,第一章作为本文的基础,主要介绍了四元数、四元数矩阵和四元数矩阵方程的一些研究背景、研究进展以及本文所做的主要工作.给出了本文要用到的一些预备知识. 第二章介绍了自(反)共轭四元数矩阵、实部半正定四元数矩阵、反射四元数矩阵的定义与性质.在此基础上给出了反射实部半正定矩阵的定义,最后建立了反射实部半正定矩阵判定法则. 第三章给出了四元数矩阵方程A1X1A1*+A2X2A2*=B有实部半正定解的充要条件及其解的表达式,在此基础上建立了四元数矩阵方程AXA*=B有反射实部半正定解的充要条件及解的表达式. 最后一章通过矩阵的等价标准形分解定理给出了四元数矩阵方程AXA*=B有同余类解的充要条件及解的表达式.作为应用,给出了四元数矩阵方程AXA*=B有自共轭解、实部半正定解的充要条件及解的表达式.
其他文献
最近,我对绥化市近百个乡村党组织进行了深入调查。从调查情况来看,大多数农村基层党组织是能够适应当前农村工作发展需要的。但是,也有不少的党组织不适应形势和任务的需要,
产品质量是一个企业是否具有竞争优势的重要因素之一,产品期望寿命的比率是判断一个新产品是否优于旧产品或者是否优于市场上其它竞争产品的一个重要指标.本文分别在单参数指
活塞问题在可压缩流体动力学研究中起到了一个很大的作用,它是双曲型守恒律方程的一类初边值问题,本文主要研究了压差方程的一维活塞问题. 首先,本文运用特征分析的方法构造
根据二元向量值Stieltjes型连分式插值(BGIRI)的定义及递推公式,本文建立了计算BGIRI系数的两个有效的迭代算法.按照算法的步骤对两个实例进行计算,所得到的结果与递推公式得到
本文隶属于Lp-Brunn-Minkowski理论,该领域是近十几年来在国际上发展非常迅速而重要的一个几何学分支.本学位论文首先简述了其所属学科的发展历程和研究现状,主要的代表人物以
复反射群作为与实反射群不同的一类反射群,近年来得到了人们越来越多得研究。时俭益教授以及他的学生相继发表了数篇相关的论文。而自同构群可以帮助人们更好地认识群的性质。
曲面奇点的基本闭链是由M.Artin在1966年的文章[1]引入的一个基本概念,它是关于奇点的一个重要的不变量。如何从奇点解消的过程计算基本闭链一直是奇点理论和代数曲面分类中
绝大多数复反射群的不同余表出类都已给出。(见[1],[2],[6],[7])。对于给定的-个复反射群G,它的每一个表出(S,P)都会产生一个相应的辫子群G(S,P)和一个分圆Hecke代数。问题是
党的十六届四中全会关于加强党的执政能力建设的若干问题决定指出:“必须坚持以改革的精神加强党的建设,不断增强党的创造力、凝聚力、战斗力。坚持党的领导核心地位,坚持党
本文应用不动点定理及积分半群理论,分别研究了两类非稠密定义泛函发展方程伪概周期解与渐近概自守解的存在性问题.全文共分三章。 第一章为引言部分,简单介绍了研究背景