SnO电催化电极的制备及性能评价

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:xiaolinshihonggang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
该论文以SnO<,2>电催化电极的制备及性能评价为主要研究内容,对所制备电极对特定有机污染物、农药废水的电化学降解性能进行了评价,并对电极结构与电催化特性之间的关系,以及苯酚的电化学降解机理进行了初步探讨.该论文优化了Sb掺杂SnO<,2>电极的制备工艺,以苯酚为目标有机物、以苯酚的电化学降解效率和电极的稳定性作为指标,实验确定了涂层制备方法、涂层厚度、热处理工艺条件、Sb掺杂量等工艺条件.设计并制备了三种电极中间层,即含Co中间层、含Mn中间层以及电化学中间层,解决了此类电极寿命较低的问题,延长了电极的使用寿命.采用X射线衍射(XRD)、扫描电子显微镜(SEM)、电子能谱(EDX)、X射线光电子能谱(XPS)、线性伏安扫描(LSV)等检测分析方法对不同制备方法所得的钛基Sb掺杂二氧化锡电极SnO<,2>/Ti的涂层晶体结构、电极表面形貌、电极表面涂层的元素组成以及化学结合状态、析氧电位进行了分析及表征.该论文对苯酚在不同条件下在SnO<,2>/Ti电极表面的降解过程及SnO<,2>/Ti电极的电催化机理进行了初步研究.采用自行设计的反应装置对SnO<,2>/Ti电极在农药废水预处理方面的实际应用进行了研究.
其他文献
飞艇蒙皮材料在生产制备过程中要承受长时间的高温高压,同时,在日常使用和运输过程中,其材料本身又要承受阵风、雨雪、外界温度变化引发的热胀冷缩、多次回收-释放等过程引发的张力变化,飞艇蒙皮材料通常处于反复加载-卸载的状态,在上述过程中飞艇蒙皮材料会发生损伤和变形。材料损伤的萌生、扩展以及变形本质上是能量的非均匀耗散的过程,在缺乏深入了解飞艇蒙皮材料的损伤与失效机制时,采用能量与形变相结合的分析方法,更
学位
学位
结合光电技术对足部进行三维重建,可以实现提取精确的足部尺寸参数,用于鞋履个性化生产;判断足部的足弓类型,用于足部健康诊断。因此设计足部三维重建与测量系统具有重大意义。本文设计了一组基于Sf M与MVS的足部三维重建与尺寸测量系统,该系统可以实现仅用单一摄像头对足部扫描,重建完整的足部模型、提取足部尺寸参数与足弓类型判断等功能。足部扫描是实现三维重建的第一步,也是最重要的一步,扫描结果将直接决定三维
学位
学位
学位
本文利用纳米SiO粒子改善淀粉浆料性能,并通过试验研究分析纳米SiO提高淀粉浆料浆膜拉伸性能、耐磨损性能以及耐屈曲性能的原理。将分散后的纳米SiO粒子添加到淀粉浆料中,经过调浆、制膜,然后用耐磨试验机以及ZWICK万能材料试验机对浆膜的物理机械性能进行测试。结果表明,当所填充的纳米SiO粒子用量在一定范围内逐渐增大,浆膜的机械性能随之逐渐提高;当添加量超过一定值后,浆膜的机械性能随填料含量增加反而
学位
随着社会经济的迅速发展,人口的急剧增多,人类的生活、生产活动向空气排放各种污染物日益增多。在这众多的污染物,H2O2和有机过氧化物的污染越来越引起人们的关注。因此研究建立环境空气中的H2O2和有机过氧化物的测定方法,对各种方法加以比较并用于实际测定,这对防治空气污染,改善环境,保护人类健康有着重要的意义。采用预浓缩冷冻方法采集样品,分光光度法检测环境空气中的过氧化物,这一方法适用于检测大气中的H2
根据制革化学中植-醛结合鞣制机理,以皮胶原纤维膜为底物,采用杨梅单宁-噁唑烷结合鞣制,得到一种新型的固化单宁膜吸附材料,并对材料的物化性能进行测试.结果表明:固化杨梅单宁膜材料的热变性温度可达92℃,抗张强度可达1.87 Mpa,耐水溶出时间可达96h,常温常压下水通量可达93.87L/m.h,吸水率可达自身重的1.7倍.从单宁的角度来讲,植物单宁-噁唑烷-胶原纤维之间的交联反应可以看作是一种新的
学位
传统能源日益枯竭,环保新能源的开发利用符合当今世界发展趋势。逆变器在新能源发电并网系统中有着重要的作用,LCL型并网逆变器由于其出色的高频谐波抑制能力而受到研究者们的广泛关注。LCL滤波器本身是一个存在谐振的三阶系统,本文主要研究LCL型并网逆变器的谐振抑制方法。  首先,对双极性SPWM调制以及单极倍频SPWM调制技术进行介绍分析,通过双边傅里叶变换分析逆变输出电压的谐波分布特性,指出两种调制方
应用先进的环境调控技术,实现组培苗的自动化、规模化、工厂化生产是使组培苗成为商品普遍应用予农业的较好途径.然而,目前培养环境内各环境因子对培养植物的生长发育及其形态的影响,还有许多问题没有弄清,相关环境控制系统急待开发.该研究的目的是开发一套能长期自动直接监控组培微环境CO浓度的调控系统;初步探索对组培箱内气体净化、除湿的方法:探索CO富集对组培苗生长发育的影响,为日后的科学实验和生产实践提供借鉴
学位