论文部分内容阅读
随着信息和自动化技术的发展,以自动控制技术为核心,结合了机械电子、通讯、信息处理等技术的各种电子消费品给人类的生活带来了充分的便利。在工业生产领域,自动化技术的进步极大地提高了生产效率和一致性,对企业的发展至关重要。自动化控制技术的发展给人类的生活和生产方式都带来了革命性变革。
伺服系统是自动化系统中最重要的控制系统之一。伺服系统设计是集精密机械、信号测量、自动控制、电力电子、微处理器软硬件等于一体的技术。伺服技术的研究和发展,能够给许多高新技术的实用化研究和产业化进程的带来非常重要的作用。
论文首先简要介绍了控制论的发展,接着描述了工业控制从模拟向数字、从集中向分布、从专用向开放的发展过程,其中重点描述了分布式控制系统的特点。然后对嵌入式控制的发展、嵌入式硬件和软件作了综述,此外,文章还描述了测试仪器的发展,虚拟仪器技术的特点与应用。
本论文研究的是分布式聚焦伺服系统。研究目的是将其作为模块化的子系统,为光磁混合存储动态测试总系统提供动态聚焦跟踪服务。
本论文的聚焦伺服系统,作为动态测试总系统的子系统,具有模块化和可移植的特点。伺服系统采用分布式控制系统的架构,在现场控制层,以嵌入式处理器实现了聚焦伺服实时控制;在监测管理层,以通用计算机为基础通过虚拟仪器软件设计,提供了能对系统整体进行监测管理的人机接口。这种分布式架构具有充分的灵活性和开放性,有利于系统整合和功能扩展。
论文研究的聚焦伺服系统可以分为四个模块:聚焦偏差探测模块、数字控制模块、执行模块、监测管理模块。其中前三者构成一个完整的闭环运动控制系统,监测管理模块作为上位机存在,负责系统整体的管理和人机交互。
聚焦偏差探测模块作为控制中的反馈模块,采用像散法获得聚焦偏差信号(FES)。数字控制模块是伺服系统的控制器,它作为现场控制层的核心,负责反馈信号的采集、控制算法实现和控制信号的输出,另外它作为下位机可以往上位机发送数据。执行模块选用的是压电陶瓷PZT位移台。它能够带动物镜移动,保持聚焦。监测控制模块以通用计算机为基础,软件上实现虚拟仪器界面,提供了友好的人机交互接口,可以实现系统运行状况的实时监测和管理。
聚焦伺服能否实现,关键在于控制器的设计。控制器是闭环控制结构内的单输入单输出数字控制器。它适合用用经典的频域分析法进行分析和设计。论文从系统精度、稳定性和工作频率出发,设计了能够实现聚焦伺服的内含逆系统校正的串联控制器。其次,文章从时域角度对执行器PZT的非线性滞回特性作了分析,提出了理论上的校正方法。另外,由于使用32位嵌入式处理器作为数字控制器,算法离散化和浮点运算定点化也是实现控制计算的必要过程。
下位机程序设计是实现控制算法的手段。从实时性角度出发,系统需要具有时间确定性和足够快速的信号采集、处理及输出。下位机采用了具有多任务非占先式实时处理的架构,保证了控制任务完成的实时性。此外,下位机程序也实现了上位机通信的功能。
上位机程序设计是在通用计算机上的windows操作系统中完成的。它采用了虚拟仪器软件的设计思路,以标准状态机为架构,使程序设计最后能提供具有易用性、扩展性和界面友好的人机交互接口。
根据上述思路设计建立的聚焦伺服系统,最后经过控制系统结果测试和实际材料动态记录测试,证明了系统可以正常工作。