【摘 要】
:
正交频分复用(OFDM)技术能有效克服无线信道多径衰落的影响,非常适合于下一代高质量、高速率的无线多媒体通信。而采用多发射多接收(MIMO)技术的OFDM系统由于更高的频谱效率受到广泛关注。但是OFDM的实际应用需要谨慎考虑信道估计等重要问题。本论文重点研究了单发射单接收(SISO)和MIMO-OFDM系统的信道估计算法,提高了信道估计的精度。论文创新性成果如下:首先,提出了基于Walsh变换的最
论文部分内容阅读
正交频分复用(OFDM)技术能有效克服无线信道多径衰落的影响,非常适合于下一代高质量、高速率的无线多媒体通信。而采用多发射多接收(MIMO)技术的OFDM系统由于更高的频谱效率受到广泛关注。但是OFDM的实际应用需要谨慎考虑信道估计等重要问题。本论文重点研究了单发射单接收(SISO)和MIMO-OFDM系统的信道估计算法,提高了信道估计的精度。论文创新性成果如下:
首先,提出了基于Walsh变换的最小均方误差(MMSE)信道估计算法,并分析了估计方差和算法的实现复杂度。该算法使用一维和二维Walsh变换集中信道能量,通过MMSE滤波减小信道噪声,降低了信道估计的均方误差(MSE),使系统误比特率(BER)降低到接近已知信道传输函数时的水平。该算法和最小平方(LS)信道估计相比获得了约3dB的信噪比增益,并以1/4的运算复杂度获得了比基于Fourier变换的MMSE信道估计更好的系统性能。
其次,论文提出了基于二维离散傅里叶变换(DFT)的多导频模式抗噪声信道估计算法,适用于块状、梳状、格形和菱形导频。算法通过导频位置偏移量预校正、二维DFT、变换域滤波和补零进行降噪与插值,并使用变形Harning窗抑制频谱泄漏,和现有算法相比获得了约2dB的性能增益。
再次,针对功放的非线性失真,论文提出了基于最小非线性噪声的部分传输序列算法。算法在子信道分割后,使用最小线性噪声准则选择旋转因子,以大约1/2的运算复杂度获得了比现有基于最小峰均功率比(PAPR)的部分传输序列算法更低的信道估计误差。
最后,论文提出了MIMO-OFDM系统的梳状优化导频序列和基于一维与二维循环滑动窗的信道估计算法。分析和仿真表明,采用梳状优化导频序列的MIMO-OFDM系统在快速移动条件下的信道估计方差明显低于现有块状优化导频序列,而基于循环滑动窗的信道估计算法有效抑制了信道噪声,使信道估计方差和误比特率降低了约一个数量级,获得了接近已知信道传输函数时的系统性能。
其他文献
压力传感器是第一类产业化的MEMS器件。早期的压力传感器主要应用于国防、工业、汽车等领域,由于近年智能电子和物联网的快速发展,传统基于硅湿法刻蚀和双面光刻的技术不能满足微型化、低成本、高性能的需求。以国际笼头企业Robert Bosch和ST Microelectronics为代表的MEMS制造商,开发了SON(Silicon-on-Nothing)结构制备硅压阻隔膜和空腔,避免了双面光刻的问题,
微波能量传输能够为电子设备提供远距离无线供电,在物联网、人体局域网、无线传感网络、生物医疗等各个领域有广泛的应用前景。然而,将微波无线能量传输技术应用于移动目标无线供电时,仍然存在着空间损耗大,无法实时跟踪目标传能等问题。针对这些问题,本文研究基于回复式反射聚焦原理的微波无线能量传输技术,从硬件变频和软件数字波束赋形两种技术途经出发,分别提出了对单个和多个移动目标形成跟踪波束的无线能量传输系统架构
雷达是人类进行目标探测和识别的主要手段。在日趋复杂的应用背景下,如医学成像、智能驾驶以及精确制导等领域,通过雷达对目标进行多维度、高分辨与实时探测的需求越来越迫切。近些年,基于光子技术的微波光子雷达有效突破了传统雷达在工作带宽等方面的限制,在超高分辨目标探测与成像方面具有显著优势。微波光子雷达能通过发射大带宽信号获得超高距离分辨率,但方位分辨率仍受雷达天线尺寸的限制。通过阵列雷达的形式可以提升方位
在远距离无线通信、雷达探测、遥感等工程应用中,高增益天线扮演的角色愈发重要。传统高增益的天线有反射面天线,阵列天线和透镜天线。反射阵天线结合了反射面天线和阵列天线两者的特点,不仅增益高,而且还具有重量轻,造价低,易于共形的优点,成为天线领域研究的一个热点。轨道角动量涡旋(OAM)电磁波由于具有螺旋相位分布,可以在一个频率下携带多个模式的信息而被广泛研究。本文主要研究与设计宽带和双频的反射阵天线,并
当前,全球集成电路产业正在步入颠覆性的技术变革时期,我国集成电路产业发展也迎来了重大的发展机遇。然而随着集成电路设计的日益复杂,越来越多的设计厂商开始采用第三方IP(Intellectual Property)核来缩短芯片的研发周期、减少研发费用,但与此同时也带来了安全隐患。如果芯片设计过程中使用的第三方IP核中嵌入了具有恶意功能的硬件木马,则会对使用该芯片的金融、国防等诸多关键领域造成严重影响。
在通信对抗和电子侦察领域,低频辐射源的识别是一个重要的研究课题。即使已知辐射源型号以及发射信号类型,也很难实现信号的完全复制。这是因为构成辐射源的各类元器件之间不可避免地存在着差异。本文研究了低频辐射源的特征提取及分类识别方法,对这一领域进行了有益探索。主要研究内容如下:首先,寻找一个有效的信号处理方法,只有在找到可靠信号处理方法的基础上才能提取到稳定并且具有区分度和辨识度的特征。本文主要研究了局
高频海洋雷达利用垂直极化的电磁波能够沿导电海洋表面绕射的传播特点,可以全天候、超视距、实时地探测大面积海域的表面动力学参数,使其在“全国海洋观测网络”中占据重要地位。由于高频段电磁波波长与低空飞机、舰船、冰山等硬目标尺寸相当,高频海洋雷达在目标探测领域也得到了广泛研究与应用。 天线系统是高频海洋雷达间最具差异的部分。现有高频海洋雷达主要依据接收天线形式的不同分为阵列式和紧凑型两类。阵列式雷达采用
纺织物的表面瑕疵检测是纺织业质量控制中的一个关键环节。传统的人工检测织物疵点的工作方式由于其检测效率低、工人劳动强度大、检测成本高等缺点已经不适合大规模生产以及消费者对产品质量越来越高的要求。基于模式识别、人工智能以及计算机视觉的织物疵点自动化检测技术和方法由于其检测精度高、检测效率高,成本低而替代传统的人工检测是大势所趋。现有织物疵点自动化检测技术各自有不同的优势和局限,学界对该领域新技术的研究
随着国防科技的发展和现代电磁工程应用需求的日益提升,各领域对电磁仿真精度的要求越来越高、对电大目标和复杂结构的仿真需求越来越大,使得电磁场精确模拟面临一个共性问题:计算资源需求越来越高、仿真时间越来越长。这一共性问题给计算电磁学带来了严峻的挑战。尤其是电尺寸的持续增加,使得电磁场精确模拟所需的计算资源呈指数上升。与此同时,国内高性能计算技术的飞速发展和国产超级计算机的迅速崛起为电磁仿真提供了硬件保
TiO2作为一种极具前景的介质材料被应用到薄膜技术中来,引起了国内外研究者的极大兴趣。作为光学膜,TiO2薄膜在可见光区透射率高,折射率大,化学稳定性高、强度大、硬度高,是非常重要的光学膜,己被广泛地应用于抗反射涂层、干涉滤波片、电致变色窗和薄膜光波导。作为电学膜,TiO2薄膜的绝缘性能好,可作为大规模集成电路的保护层。TiO2的介电常数很高,可用于半导体器件MEMS、MOS等的栅介质。随着薄膜科