【摘 要】
:
高尔基体从内部结构上可以被细分为三个组成部分:高尔基体顺面网络,高尔基体堆和高尔基体反面网络。高尔基体驻留蛋白质是每个组成部分功能的主要承担者,蛋白质亚高尔基定位预测是确定高尔基体驻留蛋白质在高尔基体内部的位置,有助于深入了解高尔基体内部的工作机制。本篇论文中我们首次将高尔基体堆作为高尔基体定位考虑到蛋白质亚高尔基的定位预测中,构建了第一个包含有三种类型高尔基体驻留蛋白的基准数据集。在对蛋白质序列
论文部分内容阅读
高尔基体从内部结构上可以被细分为三个组成部分:高尔基体顺面网络,高尔基体堆和高尔基体反面网络。高尔基体驻留蛋白质是每个组成部分功能的主要承担者,蛋白质亚高尔基定位预测是确定高尔基体驻留蛋白质在高尔基体内部的位置,有助于深入了解高尔基体内部的工作机制。本篇论文中我们首次将高尔基体堆作为高尔基体定位考虑到蛋白质亚高尔基的定位预测中,构建了第一个包含有三种类型高尔基体驻留蛋白的基准数据集。在对蛋白质序列进行数字化表示时使用Ⅱ类型伪氨基酸和功能域富集得分结合到一起的方法,将氨基酸组分信息、氨基酸顺序信息以及功能域信息保存到数值型特征向量中。我们训练了基于径向基核函数的SVM模型作为预测模型,通过调整SVM的惩罚因子有效解决了数据集不平衡的问题。我们的方法在留一交叉验证实验中取得了78.4%的预测准确率。为了进一步验证我们方法的泛化能力,我们做了独立测试实验。独立测试的实验结果显示我们的模型达到了90%的预测准确率。在留一交叉验证和独立测试实验中,我们模型的预测准确率都是高于最新的蛋白质亚高尔基体定位预测方法的。经过进一步的实验发现,当只使用Ⅱ类型伪氨基酸组分方法对蛋白质进行序列表示时预测器完全不能识别高尔基体堆蛋白,而功能域富集得分方法的加入将高尔基体堆蛋白的预测准确率提升到了95.2%,这说明高尔基体堆蛋白有明显区别于高尔基体反面网络蛋白和高尔基体顺面网络蛋白的功能域信息。一系列实验结果表明我们的方法能够有效地对蛋白质的亚高尔基体定位进行预测。
其他文献
随着人工智能的发展,以人为中心的面部表情识别已逐渐受到业界和学术界的普遍关注。面部表情动作单元(Facial Action Units,AUs)是面部表情的重要客观描述,并且AU的检测与分析对于理解和描述人脸表情有着重要的意义。然而,由于AU标注的复杂性以及现有的AU表情数据集的相对较小等问题,如何对现有的AU数据集的扩充,以解决AU数据集标签不均衡问题,已经成为本领域亟需解决的一个问题。本文旨在
作为一种流行的人体生物识别技术,步态身份识别因其在安防监控和人机交互等领域中广阔的应用前景和经济价值,引起了研究人员的广泛关注。现有的步态身份识别技术大多依赖于专用的设备,由于受设备自身条件和使用环境的限制,无法全面满足不同应用场景的识别需求。利用Wi-Fi信号进行人体行为感知具有成本低、非入侵、普适性好等优势,可以用来弥补专用设备的不足。本文研究基于Wi-Fi信道状态信息(Channel Sta
计算机视觉作为目前深度学习应用最为热门的研究方向之一,主要包含图像分类,目标检测,语义分割等子问题。近年来,由于卷积神经网络的发展,图像分析相关模型的性能得到了突飞猛进的提升。同时由于网络结构的不断进化,模型所需要的计算开销也呈现爆炸式增长。在保证模型性能的基础上降低模型所需参数、提高模型运行速度具有重要的研究意义和应用价值。蒸馏学习是近年来提出的模型轻量化方法,该方法通常将庞大臃肿的模型中的知识
在解决复杂的大规模图处理任务时,需要频繁交替使用图查询与图分析,然而目前在理论上图查询与图分析尚未统一,造成查询与分析结果的可靠性无法保证,进而导致查询与分析的优化方法有限。所以如何统一图查询与图分析,设计包含图查询与图分析的统一理论框架对于高效解决大规模图处理任务十分重要。本文基于SPARQL图查询语言,建立统一的图查询与图分析理论基础,包括其语法及语义,并研究讨论其基础理论性质,即表达性与复杂
随着科技发展,诸如全球定位系统之类的位置获取设备的部署迅速增长,目前已经产生了庞大的轨迹数据,其中包含许多有价值的信息,并且已经被用于许多实际应用中,比如城市计算和智能交通系统。对这些轨迹数据的分析处理成为关键,本文提出了一种基于轨迹分段的新颖轨迹总结方法。它是一种综合了轨迹异常检测、轨迹聚类和轨迹分段的多角度分析方式。本文的基于分段的轨迹总结框架包括五个阶段。首先,执行基于搜索窗和相对距离比的异
车载自组织网络(VANETs)是移动自组织网络中的一种,它支持车对车(V2V)和车对基础设施(V2I)通信。自组织性、分布式网络和高度动态的拓扑是VANETs的三个重要特征。VANETs的特点及其在道路安全中的应用引起了工业界和学术界的浓厚兴趣,它在改善交通管理系统,控制交通流量以及改善用户驾驶体验方面有着重要研究意义。然而在这些应用部署前必须先解决网络中信息安全和用户隐私保护问题。聚合签名认证协
如今,越来越多的应用和系统都由神经网络(深度学习)所驱动,影响着或者将影响人类日常生活中的许多方面,比如推荐系统、人机交互甚至是安全防护等领域,具体场景包括信用账户评估、垃圾邮件过滤、车牌识别等等。但是神经网络本身也有缺陷,即便是基于深度神经网络的图像分类器也容易受到微小的、难以察觉扰动的影响。恶意生成的对抗样本,虽然不会对人类肉眼的识别过程造成较大的影响,但它却会利用神经网络的不稳定性,误导模型
知识图谱的表示学习旨在将实体和关系投影到低维连续的向量空间中,从而使知识图谱与机器学习模型兼容。知识图谱补全是预测实体之间缺失关系的任务,知识库中有大量的关于实体描述的重要文本信息,而现有的基于卷积网络结构的知识图补全模型只仅仅考虑表明实体之间关系的知识三元组,而没有考虑到实体的文本描述。为此,论文提出了基于门控卷积神经网络的文本增强嵌入模型(GConvTA),将三元组的结构向量与实体描述编码得到
线条画是一种简单有效的形状可视化工具,它使用简单的线条表示图像的主要信息。线条画的特点主要包括连续性与艺术性两个方面。连续性是指画家在绘画时使用连续的线条进行绘制;艺术性是指画家在绘画时有自己独特的风格,而不是单纯地临摹物体的边缘,绘制的线条画具有一定的艺术性和吸引力。针对目前方法生成的结果中存在的线条不连续的问题,提出了一种基于边缘切向流和显著性图的连续性增强的线条画生成方法。通过沿边缘切向流进
目标跟踪技术,指在第一帧框选出感兴趣的目标,随后在一段图像序列中的每一帧图像实时地跟踪感兴趣的运动目标,是计算机视觉中的一项重要技术,在视频监控、安全监控、自动驾驶和人机交互等方面有着广泛的实际应用。其中主动目标跟踪是利用带移动平台的相机,通过图像反馈控制相机运动自动跟踪感兴趣的目标并使其始终保持在视野中心,相比于静态相机跟踪,能够具有更广泛的视野,并更好的关注目标。但是这种只使用一个相机而忽略来