论文部分内容阅读
柴油机是众多重要装备的动力核心,在发电机组、国防装备、船舶动力和工程机械等领域发挥着重要作用。然而,恶劣的使用环境和复杂的系统结构使得柴油机故障频发,不但影响柴油机使用,还可能造成严重经济损失,甚至威胁工作人员的人身安全。目前广泛应用的故障在线监测方法效果有限,维修策略相对落后,已经越来越无法满足现代化装备生产的实际需求。同时,根据柴油机变工况使用要求需不断切换运行于多种稳定转速和负荷的状态,会对在线监测诊断故障造成较大困难。因此,依托信号处理、机器学习和深度学习等技术开展变工况下柴油机故障早期预警、诊断与维修决策优化方法的研究与应用,为设备维修提供基于状态的优化决策,对提高柴油机的安全性、可用性以及经济效益具有极其重要的意义和价值。本文以柴油机为研究对象,以实现变工况下的故障在线监测与维修决策优化为目标,从信号特征的提取与选择研究出发,对工况识别方法进行研究,进而开展变工况下的故障在线监测和维修决策优化方法研究,并利用实验数据和工程案例进行方法验证。论文的主要研究内容如下:首先,基于柴油机振动信号特点开展特征提取与选择方法研究。对非线性、非平稳振动信号进行多域特征研究,并通过构建特征组合的重要度、维度和冗余度指标,提出基于多目标优化的特征选择方法,为工况特征和故障特征的提取与选择奠定基础。其次,针对复杂多变的柴油机运行工况,基于变工况下的振动信号特点开展工况识别方法研究。在仅有少量样本情况下,基于变分模态分解进行信号分解和多域信号特征提取,提出结合多域特征和线性判别分析的工况识别方法;对基于一维卷积神经网络的振动信号局部特征提取进行研究以优化工况识别模型参数,研究自适应dropout方法对网络结构进行剪枝,结合长短时记忆网络对局部信号特征进行时序描述,在大量样本情况下,提出基于一维卷积长短时记忆网络的工况识别方法,实现端到端的高效率高精度工况识别。工况识别方法经过实验和工程实例验证,效果良好。接着,在工况识别基础上,在缺乏故障数据条件下,开展柴油机异常预警方法研究。结合振动信号图像转化进行数据增强,然后基于生成对抗网络对柴油机正常状态对应的潜在空间进行建模,并结合自编码网络实现振动信号到潜在空间的映射建模,最后以潜在空间特征和判别器信号特征为基础进行样本异常程度评估,提出基于生成对抗网络和自编码网络的异常检测方法,并通过实验和工程实例进行验证。然后,基于工况识别模型开展变工况下的故障诊断方法研究。根据气缸工况识别结果确定整机工况,进而提出自适应失火故障诊断方法。针对气门间隙异常故障,通过融合多域特征实现对故障信息的准确表征,然后结合整机工况识别模型提出变工况下基于软间隔支持向量机的故障诊断方法。进一步针对故障数据稀缺造成的数据不平衡问题,提出基于改进SMOTE的故障诊断方法,提高了数据不平衡下故障诊断模型的泛化能力。最后,结合柴油机振动信号和性能退化特点,开展基于振动状态监测的维修决策优化方法研究。从振动信号中提取退化特征并结合历史维修次数和负荷对柴油机性能退化过程进行建模,并进一步利用威布尔分布描述柴油机的故障率变化过程,建立可以评估柴油机实时故障率的威布尔比例风险模型,最后以可用度最大为目标对维修决策进行优化,提出基于振动状态监测的维修决策优化方法。