小麦小孢子离体培养技术体系的研究

被引量 : 0次 | 上传用户:a98674591
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
小麦小孢子培养是一套高效再生体系,可以获得大量单倍体和加倍单倍体(DH群体),在单倍体育种中具有重要意义,同时为遗传学和细胞生物学等基础研究提供了遗传背景丰富且稳定的材料。小麦小孢子培养对培养技术及环境等因素具有严格要求。本试验采用济麦20、Pavon等14个国内外小麦品种,分别对材料的供应,材料预处理,小孢子的分离纯化,培养基、密度及品种等影响因素展开研究,为小麦小孢子的培养技术提供理论依据。研究结果如下:1.研究建立了小孢子培养的材料供应体系。在2月份以前通过分期播种小麦能够抽穗。3月份
其他文献
新闻来源指新闻材料的原始来源或提供者。在新闻作品中起显示根据的作用,既可使事实显得确凿,又可使表达显得客观。马克思主持《莱茵报》、《新莱茵报》和列宁主持《火星报
In this paper, the singular semilinear elliptic equation △u + q(x)uα + p(x)u-β - h(x)uγ= 0, x ∈ RN, N ∞ 3,is studied via the super and sub-solution method,
The limiting absorption principle is used to solve the scattering problem of time harmonic acoustic waves by penetrable objects in Sobolev spaces. The method is
We consider the Cauchy problem for a generalized Navier-Stokes equations with hyperdissipation, with the initial data in Lpσ. We follow the theme of [1] but wi
The long time behavior of the solutions of the generalized long-short wave equations with dissipation term is studied. The existence of global attractor of the
We consider the system of perturbed Schr(o)dinger equations{- ε2△(ψ) + α(x)(ψ) = β(x)ψ + Fψ(x, (ψ), ψ)- ε2△ψ + α(x)ψ = β(x)(ψ) + F(ψ)(x,(ψ),
In this paper, we derive the local estimates of a singular solution near its singular set Z of the Gaussian curvature equation △u(x) + K(x)eu(x) = 0 in Ω Z,i
We study here a class of pseudodifferential operators with weighted symbols of Shubin type. First, we develop the basic elements of the pseudodifferential calcu
By minimizing the so-called relative energy, we show that there exists a family of locally minimizing smooth harmonic maps from asymptotically flat manifolds in