论文部分内容阅读
生物组织有一个光学“透明窗口”,这个区域的光谱范围在650-900 nm之间,由于血红蛋白、水、脂质和黑色素等细胞成分在这个区域吸收最小,导致光对组织的穿透力更强,同时该区域还具有较低的自发背景荧光和光散射率,所以发射光谱处于这个区域的荧光蛋白特别适合深层组织成像。目前胆素蛋白已经将荧光蛋白的光谱范围扩展到远红光(FR,650-700 nm)和近红外(NIR,700-770 nm)区域。远红光和近红外区域的荧光蛋白对于生物成像和多重标记非常重要。然而,随着荧光蛋白发射波长的增加,荧光量子产率和荧光强度也会相应的降低,所以在保持近红外区域发射光谱红移的基础上,同时保证荧光蛋白的高亮度和单体状态依旧是个挑战。在远红光光适应的蓝藻中,我们发现了两个藻胆体核心亚基ApcE2和ApcF2,其中ApcE2来自于Synechococcus sp.PCC7335,ApcF2来自于Chroococcidiopsis thermalis sp.PCC7203。我们首先以ApcE2为模板,分子进化出一个可溶的藻胆蛋白,命名为北斗荧光蛋白BDFP3,它与植物光敏色素PФB非共价结合得到BDFP3.1,吸收峰在708 nm,荧光峰在720 nm。其中色素PФB是通过外部添加与BDFP3结合产生荧光的,游离色素PФB可通过先对BDFP3.3酸性尿素变性,再氯仿萃取的方式获得。随后我们将两个BDFP1.1与一个BDFP3进行融合,设计了一个三联嵌合体,命名为BDFP1.1:3.1:1.1,它的发射波长达722 nm,以单体形式存在,在哺乳动物细胞内的有效亮度是i RFP720的2.7倍。其中BDFP1.1是由ApcF2衍生而来,可以共价结合胆绿素BV,荧光峰在710 nm。本实验将BDFP1.1共价结合BV的荧光亮度和BDFP3非共价结合PФB的红移光谱有效结合,利用荧光共振能量转移(FRET),将BDFP1.1-BV(作为供体)的能量传递给BDFP3.1(作为受体),从而提高720 nm处的荧光亮度。同时将嵌合体BDFP1.1:3.1:1.1融合不同目的蛋白进行荧光标记,无论在原核细胞还是真核哺乳动物细胞中都能产生明亮的荧光。在BDFP1.1:3.1:1.1三联嵌合体的启发下,紧接着我们又设计了两个新的三联嵌合体,分别是BDFP1.2:3.3:1.2和BDFP1.6:3.3:1.6。它们的发射波长在670 nm,在哺乳动物细胞中表达时荧光亮度极高,而且以单体形式存在。BDFP3.3是由BDFP3非共价结合色素PEB得到的,它是一个明亮的红色荧光蛋白,吸收峰在608 nm,荧光峰在619 nm,且荧光量子产率可达到66%。因为哺乳动物细胞中只存在胆绿素BV,所以在动物细胞中表达时,色素PEB需要外部添加才能与BDFP3结合产生荧光。对于色素PEB的获取,可采用胰蛋白酶水解BDFP3.3的方式来替代色素PEB的萃取。BDFP1.2和BDFP1.6是由ApcF2衍生而来,可共价结合胆绿素BV。对于BDFP1.2:3.3:1.2来说,本实验将BDFP1.2共价结合BV的红移光谱和BDFP3非共价结合PEB的荧光亮度有效结合,利用荧光共振能量转移(FRET),将BDFP3.3(作为供体)的能量传递给BDFP1.2-BV(作为受体),从而提高670 nm处的荧光亮度。BDFP1.6:3.3:1.6的设计理念与之相同。BDFP3.3和BDFP1.2/1.6:3.3:1.2/1.6与目的蛋白融合进行荧光标记,可以进行很好的超分辨SIM成像。作为藻胆蛋白荧光探针,首次实现了红光与远红光的双色成像,同时利用嵌合方式增加细胞亮度的方法也为开发更多优良的荧光蛋白提供了新思路。BDFPs是由远红光诱导的蓝藻Chroococcidiopsis thermalis sp.PCC7203的别藻蓝蛋白β亚基ApcF2进化而来的,它们可以共价结合胆绿素BV产生远红光和近红外两种类型的荧光。其中远红光BDFPs的最大发射波长在670 nm,近红外BDFPs的最大发射波长为710 nm。BDFPs具有分子量小、可溶性高且光谱红移等优点,是开发出优良近红外荧光探针的理想模板。以N端缺失20-31aa的BDFP1.2为分子进化模板,我们获得了一个远红光荧光蛋白突变体并得到了解析。它的晶体结构显示一个BV发色团与Cys72和Cys82双共价结合。基于晶体结构,我们进一步优化了一系列新的单体化远红光和近红外荧光蛋白BDFPs,这些新开发的单体化BDFPs比之前报道的远红光和近红外单体荧光蛋白要亮得多,更适合作为荧光探针用于生物标记。