论文部分内容阅读
熔喷是一种已产业化生产超细纤维的技术,熔喷非织造材料由于其蓬松多孔的结构和极大的比表面积,已被广泛应用于过滤吸附与分离、医疗卫生等众多领域。随着环境友好型生物基和生物可降解熔喷材料的快速发展,聚乳酸(PLA)熔喷非织造材料同样体现出巨大的前景。但由于PLA本身固有的力学脆性和低热稳定性,其非织造材料的性能和应用也受到了限制。为提高PLA的力学强度和韧性,并获得增强增韧的PLA基环境友好型熔喷非织造超细纤维材料,从而拓宽其应用领域。本文以生物基尼龙11(PA11)和埃洛石天然纳米管(HNTs)分别作为PLA的有机/无机增韧增强材料,通过设计反应型增容剂(苯乙烯-甲基丙烯酸缩水甘油酯共单体接枝PLA,PLA-g-(St-co-GMA))和纳米填料表面改性方法(氨基化和环氧基化修饰),采用反应性共混法获得了相容性好、热稳定优、可纺性佳的熔喷用复合PLA基复合材料,并进一步制备得到力学增强增韧,且具有高效低阻过滤性能的熔喷非织造材料。本文共分为4个研究体系,各体系主要研究结论如下:(1)PLA/PA11共混材料及其熔喷材料研究体系:在PLA/PA11共混母粒中,PA11与PLA基本不相容,PA11分散相以“球状/椭球状”分散于PLA基体中;PLA在玻璃态路径和熔体态路径的最快速等温结晶温度分别为120℃与105℃,玻璃态路径更利于PLA结晶。PA11有利于提高PLA的热稳定性,随着PA11共混比例的提高,共混体系的黏度提高,但其“切力变稀”流变行为不变,合适的熔喷加工温度窗口为230-250℃;在共混熔喷材料体系中,PA11的共混使得PLA熔喷可纺性变差,平均直径增大至4.31-6.56μm,且缺陷增多。PA11分散相在PLA熔喷纤维中仍以“球状”分散。相比PLA熔喷材料,PLA/PA11熔喷材料的力学强度和韧性提升明显,但孔径增大、过滤效率有所下降。(2)PLA-g-(St-co-GMA)增容PLA/PA11共混材料及其熔喷材料体系:GMA的接枝率随着共单体/引发剂(St/GMA/DCP)共混比例的提高而增大,GMA在St/GMA/DCP(3/3/0.15)体系中的接枝率约为1.22%;PLA-g-(St-co-GMA)的热稳定性与PLA相近,但结晶速率下降、熔体黏度显著增大;作为增容剂,PLA-g-(St-co-GMA)可有效改善PLA/PA11的相容性、提高界面粘结力,PA11分散相仍以“球状/椭球状”分散于PLA基体中。增容共混体系的热稳性相比未增容体系进一步提升,但不改变流变行为;PLA/PLA-g-(St-co-GMA)/PA11共混体系的可纺性相比未增容体系明显改善,纤网结构均匀,平均纤维直径低于未增容体系,但仍略高于单一PLA熔喷材料(3.58-5.24μm)。相比PLA/PA11体系,PLA/PLA-g-(St-co-GMA)/PA11增容体系熔喷材料的力学强度和韧性体系熔喷材料进一步提高、孔径减小、过滤性能有所提高,但仍略低于单一PLA熔喷材料。(3)以氨基化修饰HNTs(A-HNTs)作为填料、PLA-g-(St-co-GMA作为增容剂,PLA/PLA-g-(St-co-GMA)/A-HNTs复合材料及其熔喷材料体系:在PLA-g-(St-co-GMA)的增容作用下,A-HNTs可均匀分散于PLA基体中,相容性佳;A-HNTs可促进PLA的结晶并有效提高PLA的热稳定性。PLA/PLA-g-(St-co-GMA)/A-HNTs复合体系的黏度相比PLA提高,但流变行为不变;PLA/PLA-g-(St-co-GMA)/A-HNTs复合体系的可纺性佳,熔喷纤维的平均直径相比单一PLA增大至4.13-5.87μm。A-HNTs在PLA熔喷纤维中分散均匀,并使PLA熔喷纤维表面变得略微粗糙。PLA/PLA-g-(St-co-GMA)/A-HNTs复合熔喷材料的初始模量和力学强度均高于单一PLA熔喷材料,但应力峰值伸长率降低。相比单一PLA熔喷非织造材料,复合体系熔喷材料的孔径增大、透气率提高,PLA/PLA-g-(St-co-GMA)/A-HNTs(95/5/0.5_熔喷材料的过滤性能最优。(4)以环氧基化修饰HNTs(G-HNTs)作为PLA/PLA-g-(St-co-GMA)/PA11共混体系中分散相PA11的“骨架材料”,在PLA/PLA-g-(St-co-GMA)/(PA11/G-HNTs)复合材料及其原位成纤增强增韧熔喷材料体系中:PA11/G-HNTs复合分散相以“球状/椭球状”均匀分散于PLA基体中,相容性佳。在PA11与G-HNTs的协同作用下,复合体系热稳性相比PLA/PLA-g-(St-co-GMA)/PA11与PLA/PLA-g-(St-co-GMA)/A-HNTs体系进一步提升。合适的复合共混体系的熔喷加工温度窗口为240-255℃;PLA/PLA-g-(St-co-GMA)/(PA11/G-HNTs)复合材料的熔喷可纺性佳,熔喷纤维平均直径相比单一PLA增大至3.94-5.69μm,不同复合比例的PA11/G-HNTs(100/5)分散相可在PLA熔喷纤维中轴向形成明显的“原纤”结构(原纤直径30-100 nm),但进一步提高G-HNTs在PA11分散相中的共混比(PA11/G-HNTs(100/5)并不利于“原位成纤”。具有“原纤”结构的PLA/PLA-g-(Stco-GMA)/(PA11/G-HNTs)复合熔喷材料,力学强度和韧性相比PLA/PLA-g-(St-co-GMA)/PA11与PLA/PLA-g-(St-co-GMA)/A-HNTs体系得到了进一步提高,且过滤性能提高,体现出优异的高效低阻性能。