【摘 要】
:
近年来,随着工业化的迅速发展,空气污染问题蔓延全球,严重影响了人们的生活与健康。因此,制备可以有效阻挡颗粒物(PM)的过滤材料是一项重大的课题。静电纺丝技术制备的纤维膜具有纤维直径可控、孔隙率高、比表面积大等优点,可以在较低的压力降下实现高的过滤效率。因此静电纺丝技术在空气过滤领域得到了广泛的研究与应用。但是大多数的电纺空气过滤膜的制备工艺复杂且会对环境造成二次污染。而且在个人防护领域,更会对纳米
论文部分内容阅读
近年来,随着工业化的迅速发展,空气污染问题蔓延全球,严重影响了人们的生活与健康。因此,制备可以有效阻挡颗粒物(PM)的过滤材料是一项重大的课题。静电纺丝技术制备的纤维膜具有纤维直径可控、孔隙率高、比表面积大等优点,可以在较低的压力降下实现高的过滤效率。因此静电纺丝技术在空气过滤领域得到了广泛的研究与应用。但是大多数的电纺空气过滤膜的制备工艺复杂且会对环境造成二次污染。而且在个人防护领域,更会对纳米纤维膜提出良好的生物相容性和无毒性的要求。针对这一问题,本论文选取水溶性聚合物和生物基小分子材料为原料,结合静电纺丝技术和交联改性技术成功制备了生物相容性良好的纳米纤维膜,整个制备过程也未使用任何有毒试剂,不会对环境造成污染。本论文具体研究工作和成果如下:(1)选择水溶性高聚物聚乙烯醇(PVA)和生物基小分子材料木质素磺酸钠(LS)为原料,通过结合静电纺丝和交联改性技术制备出环境友好的空气过滤纳米纤维膜。主要研究了纳米纤维膜的力学性能、过滤性能和透光性能。结果表明,改性后的复合纤维膜的力学性能得到明显的提升,拉伸应力从15.6 MPa提升到25.8 MPa,断裂伸长率由85.5%提高到358.3%。此外复合纳米纤维在24.5Pa的压力降下对particulate matter 2.5(PM2.5)的过滤效率高达99.4%,品质因子(Quality Factor,QF)值为0.212 Pa-1。经过10次循环过滤后,所得到的空气过滤器仍具有较高的过滤性能。同时我们发现,当PVA-LS纳米纤维膜实现高达99%以上的过滤效率时,透光率可以达到78%,展现出优异的光透过性。(2)选择植物多酚单宁酸(TA)对聚乙烯醇溶液进行氢键交联改性。由于TA和PVA之间的氢键作用力,PVA-TA纳米纤维膜的拉伸强度和伸长率分别提高了57%和152%。此外,PVA-TA纳米纤维膜在35 Pa的压降下对particulate matter1.0(PM1.0)的去除率为99.5%,QF值可达0.15 Pa-1,表现出良好的综合过滤性能。经过10次循环过滤后,其过滤效率仍高于99%,压降仅为35.5 Pa。(3)最后,将复合纳米纤维膜与商业口罩过滤材料的过滤性能进行比较。结果表明复合纳米纤维膜表现出更加优异的过滤性能。此外复合纳米纤维膜还展现出良好的稳定性,避免了大量丢弃口罩造成的环境污染问题。因此,我们希望本研究能够为环保过滤器的开发提供有价值的见解,并为人们在户外环境中提供保护。
其他文献
在中国,2012年电子垃圾回收行业报告指出,中国电子垃圾总量已达1110万吨,约世界总量的五分之一,居全球首位。电子废弃物具有两面性,一方面,电子废弃物含有大量对人体和自然环境有害的重金属和成分,另一方面,电子废弃物又具有高价值,这使得如何通过合理的方式平衡电子废弃物的双重性成为人类社会面临的重大挑战。。长期以来,我国对家用电子废弃物的两重性认识不足,回收利用方式简单造成极大的资源浪费和环境污染。
随着可穿戴电子设备的快速发展,需要开发柔性、可弯曲、甚至可自修复的储能器件,并期望该器件具有高能量和功率密度、长使用寿命、高安全性和低成本。柔性水系锌基储能器件有望满足上述需求。其中,凝胶电解质是实现柔性水系锌基储能器件的关键组分之一,因此有必要开发高性能的凝胶电解质。本文的主要工作是制备功能型凝胶电解质,并组装成准固态柔性水系锌基储能器件,对其电化学性能进行了系统性的测试和研究,并探讨了凝胶电解
难降解有机废水毒性大,成分复杂,生化性差,传统生化技术难以处理达标,非均相芬顿技术作为传统均相芬顿技术的改进,对此类废水有着出色的处理效果。但是由于非均相芬顿氧化反应过程产生的羟基自由基氧化性太强,难免使得废水中易生物降解的物质也被氧化降解,这间接造成了成本的上升和碳源浪费。因此实现芬顿的选择性催化降解目标污染物,即可大大减少化学药剂的使用量,从而降低成本,保留碳源。本文建立了一种非均相芬顿反应催
肠道菌群在宿主昆虫体内发挥着不可替代的作用,特别是在与昆虫生长发育息息相关的营养吸收和解毒代谢等方面。香樟齿喙象Pagiophloeus tsushimanus是一种危害香樟Cinnamomum camphora的重要蛀干害虫,2014年首次被报道并被鉴定为中国新记录种。目前在上海市所辖的14个行政区均有分布,且呈现发生面积扩大、危害加重的趋势。香樟作为行道树、景观树和用材树种在上海地区广泛栽植,
青藏高原是气候变化的敏感区与热点,对区域乃至全球气候产生重大影响。近几十年来,青藏高原正在变暖变湿,然而植被作为陆地生态系统的重要组成部分,对高原气候暖湿化极其敏感。植被归一化指数(Normalized Difference Vegetation Index,NDVI)以及植被净初级生产力(Net primary productivity,NPP)是表征植被状况的重要变量,能够很好的反映植被对于气
软体机器人由柔性材料制备而成,理论上具有无限多自由度,具有良好的适应性和人机交互性,在医疗康复、救援勘探以及果蔬采摘等领域具有广阔的应用前景。软体机械手作为软体机器人研究的一个分支,目前尚处于起步阶段,虽然能够实现对物体的无损抓取,解决了传统刚性机械手交互性差和安全性低的问题,但是整体结构刚度较低,抗干扰能力和负载能力较差。因此,本文深入研究了一种基于层状干扰的变刚度软体机械手,主要研究内容如下:
太阳能作为一种储量丰富、清洁安全的可再生能源,被广泛关注。目前,光电的发展与利用成为其重要的开发方向。近年来,随着全球光伏发电装机量的提高,并网光伏发电量也在快速增长。然而,光伏发电的输出功率具有间歇性和波动性,当光伏并网发电量超过一定的比例时,波动的光伏出力会对电力系统的稳定、安全运行及电能质量带来严重影响。造成光伏输出功率的随机性和波动性的主要因素是太阳辐照度的不确定性,因此,准确预测光伏电站
银杏(Ginkgo biloba L.)是中国特有的,集食用、药用、材用和景观等多种用途于一身的珍贵经济树种。银杏对氮肥需求量较大,施氮肥能够影响银杏生长及叶品质。硝态氮(NO3--N)和铵态氮(NH4+-N)都是银杏可直接吸收利用的无机氮源。本研究以2年生半同胞家系银杏苗为材料,采用温室盆栽土培的方法,在等量氮素条件下(2 g盆-1)设置不同的硝铵比[m(NO3--N):m(NH4+-N)]分别
为缓解能源问题和环境问题,新能源汽车特别是纯电动汽车技术发展引起广泛关注。电池作为纯电动汽车的关键部件,其性能退化或发生故障会影响车辆正常运行甚至导致重大安全事故。因此,对车载电池健康状态进行评估具有重要现实意义。本文对实车运行数据进行预处理,提取敏感特征表征电池性能状态,采用多源信息融合的方法构建车载电池健康状态评估模型,通过实车运行数据验证表明,本文所提方法能够提高车载电池健康状态评估的准确性