论文部分内容阅读
甲烷氧化菌和甲烷单加氧酶作为重要的多功能微生物催化剂,应用潜力巨大,受到众多研究机构的关注。充分发挥甲烷氧化菌的作用,不仅可防治温室气体之害,还可获取洁净能源、塑料物质、新型食品抗氧化剂、单细胞蛋白等,同时在污染治理方面(如三氯乙烯降解)也显示出巨大的潜力。但由于甲烷氧化菌细胞生长速度慢、细胞密度低、发酵周期长,导致其在工业应用中不能满足大规模生产的需要。本项目的研究内容,构建和完善甲烷氧化菌的快速、高密度培养体系。尝试利用改变甲烷氧化菌的培养条件,.改变培养基中各物质的添加量来确定其最佳工艺条件。甲烷氧化菌的高密度培养体系除了可以加速其在工业生物催化中的应用,也必将提高甲烷氧化菌在环境甲烷控制应用中的能力。建立以甲烷为碳源的细胞培养机制,建立起一整套的测定细胞干重、生长速率、延滞期、甲烷氧化菌的甲烷单加氧酶(MMO)活性的方法。采用甲烷与甲醇共同作为碳源培养菌体,并加入甲烷传递体使甲烷更易于溶于细胞内,缩短延滞期,提高了发酵液的细胞密度和细胞的MMO活性。结果表明Methylosinus trichosporium 3011高密度培养的最佳条件如下Cu2+浓度为30μmol/L,甲醇的添加量为0.05%(V/V),石蜡油的添加量为2.5%(V/V)。此时细胞生长最好,生长速率为0.0460h-1,OD600值为1.827,细胞密度最高,细胞干重可以达到1.224gL-1,是未添加的6陪,其延滞期缩短,活性也有所提高。建立起以Dianion HP20大孔树脂吸附、60%乙醇洗脱从发酵液中分离纯化甲烷氧化菌素(methanobactin)的方法。将Methylosinus trichosporium3011提纯出的methanobactin(无Cu)加入到含有30μmol/LCu2+的Methylosinus trichosporiu3011、Methylococcus capsulatus 3021、Methylosinus trichosporium OB3b和GYJ3的菌液中可影响它们的生长状况,如:代时缩短,最终细胞浓度变大,生长速度加快。其活性也都有所增加,methanobactin使Cu进入了细胞内,调控使pMMO表达量变大,增加了MMO的环氧化能力。