基于双边滤波与Hessian矩阵的多尺度太阳色球纤维识别算法

来源 :昆明理工大学 | 被引量 : 0次 | 上传用户:kongling54321
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
纤维结构是存在于太阳色球层中的一种呈现出喷射状态的线性拉长结构,研究色球纤维的动力学特征能够帮助人们对太阳大气质量平衡以及针状体的演变过程进行更进一步的研究。进行纤维结构动力学特征的研究的前提是对太阳色球纤维进行准确的识别和提取,因此选择一种高效准确的识别方法是当前人们的关注重点。在进行色球纤维识别前,我们首先对纤维图像的特点进行了分析研究,发现当前纤维识别的难点以及存在的问题仍然有许多。因为在色球纤维图像中,纤维结构本身强度变化不够大,并且与背景的差异也比较小,而且相邻纤维之间容易出现交叉以及重叠的现象,同时在纤维活动的周围仍然存在许多其他的太阳活动,这些复杂的情况都会对纤维特征的提取产生干扰,以上原因都影响着纤维结构的识别以及提取。为了解决上述问题,本文提出了一种基于双边滤波与Hessian矩阵的多尺度太阳色球纤维识别方法,结合双边滤波与Hessian矩阵进行多尺度线性滤波器的构造来进行纤维结构的识别以及提取。我们选择了一组纤维图像数据来详细说明了本识别算法的步骤,具体如下:(1)对纤维图像进行归一化处理,减少后续的变换函数在操作时对图像数据带来的影响,便于后续的函数变换;(2)使用双边滤波技术对纤维图像进行去除噪声处理,能够有效的去除纤维图像中的噪声点,并且实现保护边缘的效果;(3)采用Hessian矩阵的特征值进行线性特征点的确定,再结合高斯函数引入多尺度因子,进行多尺度滤波器的设计,从而对线性纤维结构进行识别,能够较好的识别出图像中的纤维结构,并且解决纤维边缘不清晰的问题,较好的将相邻较近的纤维结构分离开来;(4)之后为了便于后续的处理,对多尺度滤波之后的图像选择相应的阈值获得只包含像素值为0和1的二值化纤维图像;(5)将二值化后的纤维识别图像采用形态学去除小面积连通分量的操作去除非目标特征的干扰因素,也就是去除在纤维周围的其他特征,得到只含有纤维的识别图像。为了验证本文所提方法的准确性和适用性,我们将本文方法运用在了不同的数据上,并且对一段时间序列中的单根纤维进行了震荡特征的统计。实验结果表明本文所提识别方法能够准确有效的对图像中的纤维结构进行提取识别,并且那些强度较弱的纤维结构也能较好的识别出来。最后,对实验中涉及到的阈值以及双边滤波中的参数以及窗口大小进行了讨论。实验结果能够证明本方法在识别纤维特征时具有较好的结果,以及有较好的准确性和适用性,并且识别提取出的纤维结构能够用在下一步的科学研究中。
其他文献
行人重识别(Person Re-Identification,Re ID)旨在通过非重叠相机采集到的图像中找到与查询图像身份相同的行人,它通常也被认为是图像检索的子问题。近年来随着深度学习的兴起,行人重识别技术在智能监控、安防等领域得到广泛地发展及应用。现有的大多数行人重识别算法都是在同一数据集上进行有监督的训练后再测试,这类算法虽然性能较高,但是极大的限制了其可扩展性。在现实场景中,通常需要将训
海洋资源的开发利用是未来发展的战略重地,因为水下环境恶劣,人们通常借助水下机器人进行海洋探索,通过对水下视频和图像的研究分析,实现海底考古、海洋军事勘察、海洋牧场养殖、海洋环境监测、海洋生物保护等任务。水下拍摄环境复杂恶劣,大量噪声和失真的产生使拍摄的图像质量低下,导致关键特征信息丢失,因此如何获得高质量的水下图像显得尤为重要。为了获取高质量的水下图像,本文针对常见的自然光照下浅海图像和人工补充照
近几年,随着人工智能技术的广泛应用,句法分析等深层自然语言分析的关注度越来越高。句法分析的主要任务是分析一个句子的构成,并使其可以转化成句法树。通过句法分析,可以解析一个句子的构成词块,词与词之间的关系,从而帮助机器理解自然语言,并运用于机器翻译、自动问答、文摘生成等语义理解领域中。句法分析是自然语言处理的一个经典任务,本文主要研究汉语层次句法分析中的边界问题。首先通过剖析短语结构的层次句法分析的
古代石刻文献在我国历史文化研究中向来都是一项不可或缺的研究内容,具有重要的史料价值,但由于自然环境的侵蚀或是人为破坏,石刻文献的表面出现了若干大小不一、分布不均、形状多变的干扰区域,这不仅影响了人们的观感需求,而且对历史研究造成阻碍。信息化时代的来临,可将重要的石刻文献进行数字化储存以延长文物保存时间,也可通过网络共享的方式对石刻文献进行二次传播,打破时间地点的限制,增加古代历史文化的受众面,使用
芒果表皮缺陷检测是实现芒果的智能化采摘、果实质量分级的重要前提。基于卷积神经网络的计算机视觉技术为缺陷检测提供了可行有效的方法,是目前最为主流的检测方式。在自然环境下,光照的强弱、背景的复杂、果实枝叶茎干的相互遮挡等制约因素下,给芒果表皮缺陷的检测带来了巨大的挑战。采用深度卷积神经网络,可以提取更多的特征,具有更加实时精准的识别效果。因此,本研究采用基于语义分割、实例分割的方法研究自然环境下芒果表
图像融合的目标是将来自同一场景的多幅源图像的互补信息进行融合,生成高质量合成图像。红外图像反映的是目标在红外热辐射下的能量分布,不易受风沙烟雾等复杂条件影响,但其可视性并不是很理想,特别是物体纹理细节信息表现较差。可见光图像主要与目标场景的光反射有关,物体辨识度高,但容易受到外部环境的影响,特别是被遮挡时就无法准确地捕捉目标特征信息。所以,红外与可见光图像融合能够综合两种成像的优势,通过结合二者的
钢水碳含量终点预测作为转炉炼钢重要的一环,准确的预测将直接关系到炼钢效率,有利于减少能源和原材料浪费。由于熔池内不同比例的钢水碳含量能够反映在炉口火焰颜色、纹理形态等信息的变化上,因此采用炉口火焰图像特征提取的终点碳含量预测方法为传统预测提供一种新的参考,但火焰作为一种复杂变化的非结构对象,具有较强的随机性和相似性,给特征提取带来不小的困难,进而影响到终点预测的准确性。针对上述问题,本文将从钢水碳
转炉炼钢生产过程中,终点碳温的准确预报是钢铁产业至关重要的一环,而碳含量的准确预报对于提高钢铁冶炼工艺具有重要的意义。本文针对转炉终点炉口火焰图像相似性高,传统特征方法难以提取区分碳含量相近的火焰图像的关键特征,从炉口火焰图像的颜色特征和纹理特征提取入手开展研究,为提高基于炉口火焰图像特征提取的转炉炼钢终点碳含量预测准确率打下基础。本文的主要研究内容如下:(1)采用基于卷积神经网络火焰特征提取的终
行人重识别是一种利用计算机技术判断摄像机收集的视频或图像中是否存在特定行人的技术,可以自动地对多个不交叉摄像机捕捉的行人图像进行匹配,因而在智能监控系统中发挥着显著作用。但现有的大多数行人重识别方法是在单个有标记数据集上进行训练和测试的,如果在源数据集上训练的模型直接应用到目标数据集上会产生因行人图像风格差异等因素引起的域偏移问题,从而导致最终的识别精度很低。现实场景中已标记的行人样本是极度缺乏的
在当今信息时代的背景和进程下,作为信息技术载体和媒介的印刷电路板(Printed Circuit Board,PCB),从我们日常生活中经常接触和使用的手机、电脑等各类电子产品,到军事中的飞机、卫星等领域都有着广泛的应用。由于工业生产中对PCB更高的要求加之现在的电子产品高度的集成化,PCB板的生产更加细化、走线结构更加复杂,从而导致PCB板带有缺陷的概率大大提升。PCB板必须保证线路连接、线距以