论文部分内容阅读
高压直流输电系统提高了可再生能源的消纳水平,为我国经济、社会和环境协调发展与可持续发展做出巨大贡献的同时,对直流系统中的电气设备也有了了更高的标准。而直流电流互感器作为直流系统中重要组成部分,是整个直流输电控制保护与监视系统的关键设备。因此设计一套高准确度的直流互感器直接关系到整个直流系统的安全稳定运行。直流光学电流互感器(OCT)因具频带宽、绝缘好、测量准及数字化接口等优点,可完全符合直流系统的对互感器的需求指标。但直流OCT在实际应用中也会存在光路零漂、电路低频噪声、光路温漂等关键问题。故本课题就是围绕这些关键问题展开研究,旨在提高直流OCT的测量准确度。本文主要研究成果总结如下:首先,分析了直流OCT的传变原理,推导出同时具有磁致旋光效应和线性双折射的最终输出光强的数学模型,进而分析出传统双光路的OCT模型存在一不可忽略的干扰直流分量会叠加在待测的直流信号上,降低了测量精度。以此,本文提出了双向光路传输的新型光路模型,使得OCT中原本的干扰直流分量得以抵消,从数学模型和物理结构上解决了光路零漂问题。其次,建立了直流OCT的信号处理新架构,包括光电信号转换、AD采样,数字信号调制解调、数字滤波器、差除和模块构成的信号处理主干环节和以FFT算法、判据算法、平衡控制器构成的信号处理闭环控制环节。主干环节采用了坐标旋转机数字化调制技术,通过对比仿真,提出了一种最优等纹波FIR数字滤波器,仿真结果表明解决了电路低频噪声的问题;闭环控制环节设计了基于增量式数字PID的平衡控制器,理论上保证了双光路的实时平衡。再次,分析了环境温度变化对直流OCT测量系统准确度的影响,推导了关于温度变化的磁光玻璃线性双折射的数学模型。通过对比分析,提出了一种自校准式直流OCT测量系统,仿真结果表明此方案切实可行,能够很好解决直流OCT光路温漂问题。最后,提出了直流OCT软硬件设计总体方案。在硬件方面,设计了诸如微控芯片模块、AD变换模块、前端信号调理模块、电源以及通信接口等的电路原理图;在软件方面,介绍了软件开发流程,利用Quartus II和Keil分别对FPGA和STM32进行编程开发和算法验证。为直流OCT提供了可行的软硬件方案。