仿射顶点算子代数

来源 :青岛大学 | 被引量 : 0次 | 上传用户:abc1314
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
其他文献
能行实数是可计算理论的基本概念之一。可计算有理数序列的极限称为能行实数,又称为△02实数。若该可计算有理数序列递增,则其极限称为可计算可枚举实数(c.e.或left-computab
合作现象是生物化学中非常重要的现象,它反映了小分子底物与酶结合时对酶与底物结合能力的影响。通常合作现象会使产物产生速率-底物浓度的图像呈S形,这有利于生物体用以加强对
本文共分三章,第一章主要回顾了模的覆盖包络以及余挠对的基本概念和相关性质。对任一正整数n,假设Pn,表示左投射维数小于等于n的模构成的类,第二章,我们着重研究了Pn-包络与
本文从两个方面研究了一类具有实际物理背景的非线性微分方程,一是在现有非线性微分方程求解的主要方法的基础上,我们对非线性微分方程孤立波解的求解方法进行了研究,利用微分方
英语需要一定的学习环境来实践。农村小学英语学习环境的创设尤为重要,这对激起小学生学习英语的兴趣,提高小学英语教学质量的影响很大,它对培养小学生的语感起着关键的作用
向量值加细方程指的是形式为的函数方程,这里向量函数φ(x)=(φ1(x),φ2(x),…,φr(x))T是该方程对应的加细函数,{Hk}k∈Zs是该方程的加细系数,N(x)为方程的非齐次项。如果N(x)=0,方
近年来,图论作为组合数学的一个重要分支,与量子场论、组合优化、运筹学、物理通讯、计算机科学,统计物理等领域的联系越来越密切。而图论中一个重要问题——关于生成树的研究一
在半群理论中,研究半群的同余是类非常重要的问题.研究正则半群上的同余的一个有效方法是核迹方法.核迹方法首先用于对逆半群上的同余的研究.Pastijin和Petrich于1986年在文献[15
Gorenstein投射模、Gorensteiin环以及Auslander型环是同调代数和代数表示论中非常重要的研究对象.本文致力于研究环与模的Gorensteiin性质.特别地,本文研究了Gorenstein投射
变分不等式与互补问题是现代最优化研究的一个重要分支。就其形式而言,它是优化问题的最优性条件,因而它在解释与刻画数学、经济、交通控制、金融调控诸多领域平衡状态问题上