论文部分内容阅读
ZnO导电陶瓷的原料丰度高、成本低廉、无毒无害、制备工艺简单,并且具有大的禁带宽度、高的激子束缚能、高的透明度和强的导电能力等优异的电学、光学性质,因此在传导电阻、导电薄膜靶材、电极材料、热电器件等领域具有广泛的研究价值和应用前景。ZnO陶瓷的高导电能力与其结构密切相关。作为多晶结构的陶瓷材料,烧结获得的ZnO陶瓷内部的施主浓度、晶界结构、物相种类、结构无序程度等结构特征受到制备过程中的掺杂元素种类及含量、烧结方式、烧结气氛等参数的调控,并且这些结构特征共同协调影响着ZnO陶瓷的导电能力。因此,本论文主要研究了Al2O3、Ti O2和MgO掺杂的ZnO基陶瓷,通过改变掺杂剂的种类及含量、烧结气氛、烧结方式来调节电导率的变化,并从ZnO基陶瓷的物相结构、显微形貌、局部结构无序度、缺陷类型及分布的角度,分析调控ZnO陶瓷的结构及电导率的因素,从而建立起“制备-结构-性能”间的联系,指导ZnO基导电陶瓷的研发以及应用。本论文中涉及到的主要创新工作及结果概述如下:1.烧结气氛是影响ZnO陶瓷的结构和性能的一个重要参数,分别在空气、氮气(N2)、一氧化碳和氮气混合气体(CO+N2)的气氛中烧结制备了Al2O3、Ti O2和MgO共掺杂的ZnO基导电陶瓷,电导率按此顺序递增,且在CO+N2还原气氛中制备的ZnO陶瓷具有最高的电导率σ=1.5×105S·m-1以及正的阻温系数749ppm/℃。低氧分压的还原气氛能够提高Al、Ti在ZnO中的固溶度,进而提升施主缺陷含量,增加载流子的浓度;同时具有降低晶界受主缺陷、增加载流子迁移率的作用。此外,拉曼光谱、EPR和NMR的综合分析共同确定了Al Zn-Zni复合体缺陷为增强ZnO基陶瓷的导电能力的主要浅施主缺陷,且该缺陷的含量在还原气氛下烧结制备的陶瓷中达到最大,解释了高导电的原因。2.掺杂Al元素具有显著提高ZnO基陶瓷电导率的作用,因此需要分析Al元素对ZnO陶瓷微观结构和导电能力的作用。在CO+N2还原气氛下烧结制备了Al2O3的掺杂量分别为0.1 mol%、0.25 mol%、0.4 mol%和0.55 mol%的ZnO基导电陶瓷,探究了不同掺杂含量的Al2O3对ZnO陶瓷的结构和电学性能的影响。不同含量的Al2O3能够调节ZnO陶瓷内的浅施主Al Zn-Zni复合体缺陷的浓度、晶界的数量和Zn Al2O4尖晶石的含量,通过调控ZnO陶瓷的结构实现电导率的变化,且在Al2O3的最佳掺杂量0.25 mol%时实现了陶瓷内最佳的载流子的浓度和迁移率,进而获得到了最高的电导率1.52×105S·m-1。3.研究了放电等离子体烧结(SPS)方式对掺杂0.25 mol%Al2O3的ZnO陶瓷的结构和电性能的作用,SPS方式能够增加Al在ZnO中的固溶度、减少尖晶石的含量,同时具有降低晶粒尺寸、增加晶界数量的作用。通过拉曼光谱、紫外可见吸收光谱、光致发光光谱的综合分析表明SPS方式能够增加结构无序度和浅施主Al Zn-Zni复合体含量,从而提高了ZnO陶瓷的电导率。4.通过改变Al、Ti和Mg离子的掺杂含量制备了具有不同组分的ZnO基陶瓷,用于探究Al、Ti和Mg掺杂元素对ZnO陶瓷的作用。不同的掺杂组合会很大程度地改变ZnO基陶瓷中的物相组成、显微结构和缺陷种类,进而影响着电导率的高低。Mg离子与Zn离子的相似性,使得掺杂后ZnO陶瓷的结构和电性能无明显变化;掺杂Ti离子后产生深施主Ti3+及过量的尖晶石,导致ZnO陶瓷的导电能力有所降低;基于浅施主Al Zn-Zni复合体缺陷能够增加传导电子的数量,掺杂Al离子的ZnO基陶瓷的导电性能大幅度提高。5.上述研究表明了掺杂Al的ZnO陶瓷中形成的浅施主Al Zn-Zni复合体缺陷是提高电导率的最主要因素。将ZnO导电陶瓷片加工成具有不同导电能力和不同颗粒尺寸的ZnO粉体,研究了与Al Zn-Zni复合体有关的奈特位移效应以及电荷离域程度和导电能力的关系。结果表明具有高导电能力的大尺寸ZnO陶瓷颗粒构成的粉体中Al Zn-Zni复合体的浓度更高,离域电荷分布范围更广,从而间接地说明了ZnO陶瓷具有高电导率的原因。通过对Al元素的配位环境和电子缺陷结构及ZnO材料的局部无序度的分析,建立了Al掺杂ZnO的微观结构与电性能之间的相关性。