论文部分内容阅读
大量的物理现象,工程和经济问题都可以归结为非线性微分方程的数学模型.非线性问题没有统一的处理方法,规范形理论是非线性动力学领域的前沿问题,也是研究向量场分岔现象重要手段.超规范形(最简规范形,惟一规范形)的提出丰富和发展了规范形理论, 规范形的研究正朝着高维的方向发展,它的求解化简非常复杂繁琐.目前,对二维以及三维向量场规范形的研究成果较多,但对于高维系统的规范形以及应用问题的研究还是一个难题,本文运用新次数定义下的非线性动力系统规范形理论,研究一类四维非线性动力系统的规范形简化问题及其在实际工程问题中的应用.本文的具体内容如下: (1)将新次数函数与多重李括号相结合,研究了一类四维非线性动力系统的简化问题,借用Maple数学符号软件,给出其3次、5次及7次截断的规范形的具体形式,并利用参数变换法给出了系数对应关系; (2)以悬索结构的覆冰问题为工程背景,对2自由度覆冰悬索模型进行了分析.首先利用多尺度方法导出该模型在直角坐标系下的平均方程,其次利用新次数函数和多重李括号,研究了该模型平均方程的简化问题,并获得7次截断的规范形.