论文部分内容阅读
随着微电子技术、电力电子技术、计算机技术和现代控制技术的发展,电机制造工艺水平的不断提高,永磁交流伺服系统作为数控机床、机器人、大规模集成电路制造、航空航天等领域的重要驱动部件,在现代工业自动化生产中获得了广泛的应用。本文根据国家863计划课题要求,针对仿人机器人关节驱动系统的快速稳定控制,研究机器人关节驱动系统一体化集成设计方法,从永磁交流伺服系统驱动控制策略和微小型高性能交流伺服系统研发两个方面进行了全面而深入的研究。具体内容包括以下几个方面:交流伺服系统动态频响的核心制约因素是内环电流环的带宽,本文对电流环带宽扩展策略进行了研究。在数字控制交流伺服系统中,制约电流环带宽的因素主要包括功率器件的开关频率和A/D采样时间、计算处理、PWM占空比更新等数字控制延时。在不提高功率器件开关频率的前提下扩展电流环的带宽很有必要。在同步旋转坐标系下的电流解耦控制基础上,分析了永磁交流伺服系统中电流采样和占空比更新方式产生的延时对电流环带宽的影响,提出了在一个载波周期内实现定子电流的双次采样和PWM占空比双次更新的带宽扩展策略。在保持开关频率不变情况下,理论上可扩展电流环带宽一倍以上,从而可以大幅提高永磁交流伺服系统的动态性能。对永磁同步电机数字控制系统的电流预测控制进行了研究,提出了一种增强鲁棒性的预测控制算法。基于拉格朗日插值的传统无差拍预测控制算法,具有动态响应快、开关频率恒定、适于数字实现等特点,但对电机电感参数失配比较敏感。为此提出的改进无差拍预测控制算法,改进了电流偏差约束条件和输出电压预测方法。利用根轨迹法分析了算法鲁棒性与电感参数失配的关系。在电机电感参数发生失配情况下,能够维持系统稳定,实现电机电流的闭环控制,使实际电流跟随给定,提高了算法的鲁棒性。为保证电机转速快速跟随给定,动态过程中不出现超调和振荡,提出了一种速度环IP控制器参数设计方法。根据永磁同步电机速度环结构和数学模型的分析,调整了比例增益的作用位置,实现局部反馈校正,构成速度环IP控制器。根据稳定性和跟随性要求,选取转速偏差指标函数,推导出IP控制器参数设计方法,并在控制器设计中增加了anti-windup策略,以抑制积分饱和现象。通过辨识转动惯量,实现控制器参数整定。所设计的速度环控制器,可以获得电机转速的无超调、无振荡快速响应,并具有较强的抗扰动能力。针对仿人机器人一体化关节驱动系统所要求的小型、轻量、高速度和高精度控制等关键问题,提出了微小型高性能交流伺服系统的研究和设计方法。微小型交流伺服系统由高功率密度永磁电机、微小型伺服驱动器和磁编码器组成。主要围绕伺服驱动器微小型化设计中的关键技术进行研究,从电源系统、电压电流检测、结构设计等方面进行了微小型化设计,并给出了各部分功能模块的设计方法和解决方案。为保证系统的可靠性,对微小型伺服驱动器进行了热设计,建立了热分析模型,并基于热仿真分析实现了驱动器结构优化。在上述工作的基础上,研制开发了两种型号的微小型交流伺服驱动器,分析了系统的硬件组成和软件结构设计。对研发的微小型交流伺服系统进行了实验研究,具有控制性能良好、体积小、重量轻、功率密度高、通用性强等特点,满足仿人机器人一体化关节驱动系统的性能指标要求,为微小型伺服控制技术的自主创新和产业化打下了坚实的理论和实践基础。本文的研究内容是国家高技术发展计划(863计划)重点课题“仿人机器人感知控制高性能单元和系统——高速高精一体化关节”的重要组成部分。该项目于2011年9月通过863专家组验收,获得了较高的评价。