论文部分内容阅读
材料的失效(如疲劳、磨损和腐蚀等)大多开始于材料表面。通过渗碳、表面纳米化等表面强化处理方法来提高材料表面的强度和硬度,是提高零件使用寿命的常用方法。采用超音速微粒轰击处理(Supersonic Fine Particles Bombarding,SFPB),可在材料表面制备具有一定厚度的纳米细化层。若在超音速微粒轰击处理的过程中,掺入活性炭,则可在室温下在材料表面形成含碳的硬化层。因此,通过超音速微粒轰击诱导表面纳米化结合后续热处理,可以形成均匀致密的富碳的纳米晶层,提高材料表面的力学性能。本文将超音速微粒轰击技术与稀土催渗以及后续热处理工艺相结合在18Cr2Ni4WA钢表面制备了纳米合金化渗碳层。研究了轰击过程中的扩散机理和碳元素沿深度方向的分布,以及添加稀土元素对渗碳效果的影响;分析了退火工艺对渗碳层微观组织结构以及渗碳层硬度、耐磨性等力学性能的影响,结果表明:1、室温下,经SFPB渗碳处理5min、7min和10min后,在18Cr2Ni4WA钢表面均形成了纳米渗碳层,塑性变形的深度为20μm左右,渗碳层厚度约为14μm;随着轰击时间的增加,纳米晶晶粒尺寸逐渐变小(由40nm减小到25nm)。含碳量逐渐提高(质量分数由3.83%提高到8.6%),碳浓度由表及里呈梯度变化;弹丸与活性炭粉末的质量比(10:1、15:1、20:1)越小,在18Cr2Ni4W钢表面形成的渗碳层越厚。轰击时间越长,表层硬度越高且磨损性能越好,硬度最高达到460HV0.2是基体的1.5倍;耐磨损性能也随之提高。2、稀土氧化镧(La2O3)的添加及其添加方式对渗碳过程产生很大的影响。稀土可以提高渗碳速率,但表面预置La2O3催渗层明显比同步稀土送粉方式的催渗效果好。表面预置催渗和同步送粉催渗的渗碳层深度分别为8μm和10μm,其渗碳层表面碳元素的质量百分比分别为16.12%和7.03%;在距离表面10μm的范围内渗碳层中碳浓度呈梯度分布,超过10μm碳浓度趋于基体碳浓度。3、后续退火处理对渗层组织和性能有显著的影响。分别在300℃、400℃、450℃、500℃、和600℃的温度下,保温120min退火处理。退火后晶粒大小尺寸分布在2050nm;随着退火温度的升高,表层碳元素的扩散深度逐渐增大。400℃退火过程中纳米晶体的扩散增强,Fe3C析出量增大;500℃退火处理Fe3C进一步增多,硬度稳定地增加到最大,约为550HV0.2;600℃时硬度略有降低,发生了再结晶。分别在500℃退火温度下保温90min、120min、180min、240min,考察退火时间的影响。结果显示,保温时间为120min时硬度最高。结果清楚地表明,由SFPB渗碳形成的表面纳米晶体在高达500℃时是稳定的。