散度型椭圆方程及其障碍问题很弱解的正则性

来源 :北京交通大学 | 被引量 : 3次 | 上传用户:sbsb5503564
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本学位论文研究了散度型椭圆方程及其障碍问题很弱解的正则性如下三个问题:一是有关微分形式的A-调和方程很弱解的性质(梯度的零点性质、梯度的较高可积性、奇点可去性等);二是非线性散度型椭圆方程组的Dirichlet问题的很弱解由边值决定的正则性;三是具有变指数A-调和方程及其障碍问题的弱解的局部Holder连续性.具体内容如下:第1章简述本研究的选题背景、综述本文相关的文献资料和最新发展动态.第2章考虑A-调和微分形式方程的很弱解梯度的零点性质.通过建立很弱解的Caccioppoli估计,得到很弱解梯度的弱逆Ho1der不等式,最后结合本性零点的定义获得很弱解的梯度的零点性质.第3章研究A-调和微分形式方程很弱解梯度的可积性提高.通过建立很弱解梯度的弱逆Holder不等式,基于Iwaniec及其合作者的一系列工作中方法技术,当很弱解梯度的可积指数r小于并接近于可积指数p时,得到可积指数的提高,从而得到很弱解梯度达到弱解梯度的可积指数.第4章考虑了关于微分形式的椭圆方程很弱解的奇点可去性.通过梯度的扰动向量场Hodge分解式,给出在很弱解意义下的适当检验函数,从而建立很弱解的Caccioppoli估计;再结合容量的处理方法,从而建立具有微分形式的椭圆方程很弱解的奇点可去性,并进一步将该结论推广到加权下具可控增长的椭圆方程很弱解的奇点可去性问题.第5章研究散度型非线性椭圆方程组Dirichlet边值问题的很弱解由边值决定的正则性.通过扰动向量场的Hodge分解给出很弱解意义下的适当检验函数,借助Sobolev嵌入定理、Stampacchia引理等技术,从而在不同边界值正则性下讨论了很弱解的正则性情况.第6章研究具有可变指数下非标准增长的A-调和方程弱解梯度的局部Holder连续性.利用变指数的强log-Holder连续性,建立方程弱解和某个在局部意义下标准增长并凝固自变量椭圆方程Dirichlet问题的解v作为比较函数的逼近关系,再结合反向Holder不等式,采用迭代方法,继而得到梯度的局部Ho1der连续性.第7章研究具有可变指数的椭圆障碍问题弱解梯度的局部Holder连续性.其使用的方法类似于第六章的凝固自变量和标准增长方程边值问题作为比较对象,但是在建立关于比较函数v的逼近关系时,需要多次给出▽u与▽v之间的估计关系,并结合反向Holder不等式,得到局部Holder连续性。
其他文献
学位
学位
学位
学位
学位
学位
“十三五规划”的稳步开展促进经济发展与生态文明建设的深度融合,实现可持续发展成为经济社会发展的原则之一,其中绿色金融作为经济可持续发展的重要组成不但能够为绿色产业企业提供资金支持,同时也是社会经济转型升级的重要支撑之一。这其中,绿色债券成为促进绿色金融发展的重要因素之一。2016年以来,随着我国绿色金融体系的逐步完善,绿色债券市场发展迅猛。能源化工行业的节能环保项目符合绿色债券的发行标准,因此如果
在当前素质的教育理念下,应该重视对学生的教学工作,特别是小学数学对于学生的成长而言是不可缺少的一部分,数学学习自身具备一定的思维性,学生在学习的过程中需要做好相应的分析工作,但是由于年龄和阶段的限制,小学生的思维逻辑还没有完全形成,而且形象思维占据相对较多,这使得学生在解决一些难度比较高的问题时,没有较好地解决方法。而画图策略作为当前小学数学教学中的一部分,它能够帮助学生更好、更细致地做好分析,从
称图r是对称图或弧传递图,如果r的全自同构群作用在r的弧集上传递.对称图,特别是小度数对称图,常被用来设计互联网络.本文主要研究连通无核三度对称m-凯莱图,非交换单群上连通四度2-弧传递凯莱图,具有非交换单群传递的连通五度对称图以及具有特征非交换单群传递的连通五度对称图.论文结构组织如下.第1章主要介绍本文所要用到的有限群论和图论的基本概念.第2章研究无核三度对称m-凯莱图.如果一个图r含有一个自
图的正则覆盖理论是代数图论和拓扑图论中一种非常重要的工具和方法.近年来,这种方法被大量的应用于对称图和对称地图的构造中.自从Hofmeis-ter于1988年得到了连通图双层覆盖的计数,图的正则覆盖计数问题就引起了国内外学者的广泛关注.另一方面,地图计数与亏格分布一直以来都是拓扑图论的核心研究内容之一,国内外学者也在此问题上得到了丰富的结果.因此基于这两方面内容,本文主要致力于研究以下三个问题:在