论文部分内容阅读
本学位论文研究了散度型椭圆方程及其障碍问题很弱解的正则性如下三个问题:一是有关微分形式的A-调和方程很弱解的性质(梯度的零点性质、梯度的较高可积性、奇点可去性等);二是非线性散度型椭圆方程组的Dirichlet问题的很弱解由边值决定的正则性;三是具有变指数A-调和方程及其障碍问题的弱解的局部Holder连续性.具体内容如下:第1章简述本研究的选题背景、综述本文相关的文献资料和最新发展动态.第2章考虑A-调和微分形式方程的很弱解梯度的零点性质.通过建立很弱解的Caccioppoli估计,得到很弱解梯度的弱逆Ho1der不等式,最后结合本性零点的定义获得很弱解的梯度的零点性质.第3章研究A-调和微分形式方程很弱解梯度的可积性提高.通过建立很弱解梯度的弱逆Holder不等式,基于Iwaniec及其合作者的一系列工作中方法技术,当很弱解梯度的可积指数r小于并接近于可积指数p时,得到可积指数的提高,从而得到很弱解梯度达到弱解梯度的可积指数.第4章考虑了关于微分形式的椭圆方程很弱解的奇点可去性.通过梯度的扰动向量场Hodge分解式,给出在很弱解意义下的适当检验函数,从而建立很弱解的Caccioppoli估计;再结合容量的处理方法,从而建立具有微分形式的椭圆方程很弱解的奇点可去性,并进一步将该结论推广到加权下具可控增长的椭圆方程很弱解的奇点可去性问题.第5章研究散度型非线性椭圆方程组Dirichlet边值问题的很弱解由边值决定的正则性.通过扰动向量场的Hodge分解给出很弱解意义下的适当检验函数,借助Sobolev嵌入定理、Stampacchia引理等技术,从而在不同边界值正则性下讨论了很弱解的正则性情况.第6章研究具有可变指数下非标准增长的A-调和方程弱解梯度的局部Holder连续性.利用变指数的强log-Holder连续性,建立方程弱解和某个在局部意义下标准增长并凝固自变量椭圆方程Dirichlet问题的解v作为比较函数的逼近关系,再结合反向Holder不等式,采用迭代方法,继而得到梯度的局部Ho1der连续性.第7章研究具有可变指数的椭圆障碍问题弱解梯度的局部Holder连续性.其使用的方法类似于第六章的凝固自变量和标准增长方程边值问题作为比较对象,但是在建立关于比较函数v的逼近关系时,需要多次给出▽u与▽v之间的估计关系,并结合反向Holder不等式,得到局部Holder连续性。