论文部分内容阅读
微量注塑成型由于一次性成型、效率高、成本低、适合批量化生产以及成型制品性能优良等优点,成为聚合物MEMS(微机电系统)中主要成型方式之一,广泛应用在医疗卫生、精密仪器、航空航天、信息通讯等各个领域。目前微量注射成型技术主要采用螺杆塑化微量聚合物,极少情况采用柱塞塑化。前者存在小直径螺杆加工困难、塑化不均匀、单次塑化量多于要求的注射量、小直径螺杆寿命较短及熔体充填困难等问题;后者塑化效果差,同时也面临熔体充填困难的问题。基于超声波塑化的微量注射成型技术可以很好解决前述问题,并且能够大幅度降低能源消耗、简化注塑装置以及降低成本,因此成为微量注塑成型中的研究重点。本文在前人的研究基础上,对超声波微量塑化机理进行理论和实验研究,并对单克超声波微量注塑装置进行设计。主要研究内容如下:(1)对超声波摩擦生热效应和超声波粘弹性效应进行理论分析。针对超声波空化效应,根据弹性液体中RPNNP方程(空化气泡运动方程),利用四阶龙格-库塔法和MATLAB软件,模拟分析超声波空化效应中各参数的影响及其较佳工艺参数。(2)采用ANSYS对聚合物塑化过程中温度的变化进行模拟。仅考虑超声波能流的作用,材料选为聚合物LDPE(低密度聚乙烯),将超声波能流从顶部作用于聚合物模型,模拟探究其塑化过程。(3)参考国内外研究成果,确定一种超声波微量注塑系统的设计方案;计算超声波注塑系统的主要性能参数,即塑化部分及注射部分主要性能参数;根据前面的方案和计算,设计一种超声波微量注塑系统:首先对注塑系统中的超声波系统进行设计,主要对超声波工具头进行设计,并对超声波系统其他关键部件进行设计选型,然后对伺服驱动系统、塑化腔及模具等进行设计,最后建模整个超声波微量注塑系统。(4)对设计的工具头及整个注塑装置进行仿真模拟,探究其合理性。采用ANSYS软件对超声波工具头进行振动分析,即利用模态分析及谐响应分析模拟其振型、固有频率和放大系数等参数,验证工具头设计的合理性;利用ADAMS软件对注射过程进行运动学和动力学仿真,得到其位移、速度、加速度、扭矩和注射力等参数,验证注塑装置设计的合理性。(5)通过自行设计和搭建的实验平台,选用LDPE作为实验原料进行超声波塑化实验。探究塑化压力和塑化时间这两种工艺参数对超声波塑化的影响,并得出较佳工艺参数;同时探究超声波塑化过程。